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Preliminary Thoughtsona Rational Constructivist Approach

to Cognitive Development

PRIMITIVES, SYMBOLS, LEARNING, AND THINKING

Fei Xu

INTRODUCTION

This chapter considers a newly emerging view of cognitive development: rational con-
structivism. 1 will atcempt to sketch the view as I see it, in broad strokes. | will draw
on arguments and evidence to see if an overall picture will emerge. Two key develop-
mental issues are discussed: how to characterize the initial state, and how to character-
ize mechanisms of learning and developmental change. 1 will argue for the following
theses: (1) Infants are much smarter and much more sophisticated learnces than what
William James, Piaget, or Quinc had thought; infants’ world is not “a blooming, buzz-
ing confusion.” However, it cemains unclear how best to characterize the initial seate.
Instead of sensorimotor primitives or core knowledge, the initial state may perhaps be
best characterized as a set of proto-conceptual primitives. {2) Over the last several de-
cades of research on cognitive developmenc three types of learning mechanisms have
been uncovered: language and symbol learning asa vehicle for conceprual development;
Bayesian learning as a tool for belief revision; and explanation, analogy, and relared pro-
cesses as ways to organize factual knowledge and generate new hypotheses that drive
genuine conceptual change. These mechanisms may be considered both rational and
constructive.
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THE INITIAL STATE OF A HUMAN INFANT:
PROTO-CONCEPTUAL PRIMITIVES

The ficld of developmental psychology has been struggling with the issuc of innate-
niess for some time {¢.g., Carcy, 2009; Chomsky, 1987; Elman et al,, 1996; Fodor, 1975,
1981; Quine, 1960; Pinker, 1984, 1989; Spelke, 1994; Spelke, Breinlinger, Macomber, &
Jacobson, 1992; Smith, 2001). Discussions often start with philosophers such as Plaro,
Berkeley, Descartes, Locke, Quine, Fodor, Chomsky, and others, and when moving into
the subficld of cognitive development, Piaget (c.g., Piager, 1954). The challenge is to ac-
curately characterize the initial state of 2 human infant—What does the infant know?
What is he or she capable of thinking and learning? What sorts of building blocks ate in
place ac birth or shortly after? The importance of this question cannot be overstated—
without a characterization of the initial state, it would be difficult, if not impossible, to
understand the nature of learning and developmental change.

Piager’s account of the starting state is in every textbook on developmental psychol-
ogy. Most parents have heard of Piaget and know something about his ideas, be it about
object permanence, or the child as an active learner, or accommeodation and assimilation
as mechanisms of learning. Although the credit is due to Charles Darwin as the first to
systemartically document children’s behavior as the basis for theorizing about develop-
ment, Piaget stands out as the first to propose an account, with a characterization of the
initial state and a characterization of how development proceeds from one stage to the
next. (The other, even more famous, developmental psychologist is, of course, Sigmund
Freud, whose main concern was normal and abnormal personality development.) Armed
with the progress developmental psychologists have made in the last several decades,
there is now reasonable consensus chat the Piagetian picture is not right, in fundamental
ways. In particular, his characterization of the initial state and his stage theory have been
called into question by many, based on a large body of empirical findings (e.g., see Carey,
2009; Carey & Spelke, 1996; Gelman & Baillargeon, 1983; Gopnik 8 Meltzoff, 1997;
Spelke ecal,, 1992; Wellman 8 Gelman, 1992, for reviews).

Onc new perspective that has been developed in detail is the core énowledge proposal
(Carey, 2009; Carcy & Spelke, 1996; Spelke, 199.4; Spelke et al,, 1992 also sometimes called
core cognition). In this view, human infants begin life with a set of core knowledge systems,
and a handful of innate concepts arc at the center of these reasoning systems—object,
number, agent, causality, and space. Each core system has its roots in our evolutionary
history and is shared with our primate relatives. Importantly, the fact that these core cogni-
tion systems participate in certain kinds of inferences is the signature for thinking of them
as having conceptual content. Two versions of this point have been explicated in the liter-
ature: One focuses on the facr that these early representations ate amodal (Spelke, 1994;
Spelke et al., 1992), contrary to the Fodorian view that encapsulated perceprual modules
are modalicy-specific (Fodor, 1981); the other focuses on the inferential role these carly
representational structures participate in, that is, the richness of the inferences and types
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of inferences {Carey, 2009). For example, the object concept is not limited to the visual
modalicy; similar principles guide infants’ perception of objects in the visual and tactile
modalities (c.g., if two picces move together—common fate—infants perceive them as
parts of one object). Infants’ number sensc not only allows them to perceive approximate
numerosities in vision and audition, but it also allows them to perform simple arithmertic
opcrations, such as approximate addition and subtraction, an example of rich inference.

[ have no doubt thar che progress in developmental psychology warranes a serious re-
consideration of the Piagetian account of development; I also share the confidence that
the last several decades of infancy research has been illuminating, Here I raise a few ques-
tions about the core knowledge thesis and consider a revision.

The perceptual-conceptual distinction has been central to the debate about the inirial
state of 2 human infant. For various reasons, most developmental psychologists are more
sympathetic to and more comforeable with the view that infants stare life with perceprual
capacities and primitives: They can perceive color, size, shape, and motion and, indeed,
there are well-studied brain areas that are designated for representing these basic per-
ceptual primitives (c.g. Elman et al. 1996; Karmiloff-Smith, 1990; Piaget, 1954). These
views are in agrecment with the long-standing philosophical tradition of empiricism (c.g.
Locke, 1690/1975; Hume, 1748/1999) and Piaget’s characterization of the initial state in
terms of sensorimotor primitives.

Spclke, Baillargeon, R. Gelman, and their colleagues were among the first to challenge
the Piagetian view, marshaling both theoretical arguments as well as new empirical evi-
dence. The avalanche began with the seminal work of R. Gelman and Baillargeon (1983),
Spelke (1985), and Baillargeon, Spelke, and Wasserman (1985). New methodological
advances—in particular the development of the violation-of-expectation looking time
paradigm—allowed researchers to ask questions of infants that could not be asked before.
New studies with young infants barely 4 months of age suggest they may already repre-
sent persisting objects; even more astonishingly, these young infants may already have a
set of principles that guide their reasoning about medium-sized objects, and these are the
very same principles that adults use still—for example, continuity, solidity, and contact.
Spelke ct al. (1992) articulated the core knowledge view as an alternative to the standard
Piagetian theory. They focused specifically on the centraliry of these early conceprs: Not
only is the object concept embedded in a system of reasoning, it is also amodal—similar
evidence is found in visual as well as vacrile tasks {e.g., Streri & Spelke, 1988).

More recently, in an clegant, well-written, and ambitious synthesis of recent work on
infant cognition and cognitive development in general, Carey (2009) argued forcefully
against the Piagetian characterization, as well as that of the British empiricists, of the ini-
tial srate. She marshaled evidence from a large body of literature supporting che claim thac
human infants arc endowed with at least four “core cognition” systems: object, number,
agent, and cause. Although Carey suggests that the formar of representation for cach of
these concepts may be iconic, she also argues thar these primitives are conceptual, using
the criterion thar these carly representarions play important inferential roles in larger
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conceptual structures. Within the core knowledge system of object cognition, a rich sct
of reasoning principles appears ro be in place very eatly in development. Similarly within
the core knowledge system of agent cognition, a rich set of reasoning principles seems to
be in place by the end of the firse year. Furthermore, the outputs of these core knowledge
systems interact with each other to support even richer inferences in other reasoning rasks.

Two issues need further consideration, however. First, advances in vision science have
taught us that perceptual inferences are ubiquitous in all aspects of perception, from lu-
minance perception, surface perception, structurc from motion, to generic viewpoint and
object recognition (e.g., Feldman, 2012; Knill & Richards, 1996; Knill & Pouget, 2004;
Weiss, Simoncelli, & Adelson, 2002). For example, Feldman and Singh (2006) showed
that shape representations naturally arisc as a form of probabilistic inference. The inferen-
tial mechanism tries to guess what best explains the observed shape given certain assump-
tions about the underlying generative process. Thus it scems unlikely thac, by itself, playing
an inferential role is enough for saying that the initial primitives have conceprual content.
Principles of object perception—cohcsion, solidity, and contact—are argued to be em-
bedded in a system of reasoning tha is causal-explanatory in nature. Perceptual inferences
appear to be qualicatively similar—scts of perceptual variables are computed jointly to de-
termine the output of the inferential mechanisms, and some are more causal than others.

Second, it may not be surprising that representations of objects and agents intcract—
after all, what good would the outputs of the corc knowledge systems do if they did not
interact with each other to advance understanding of the world? Put another way, even if
we started with lower-level primitives and somchow construct the concepts of object and
agent, one may also expect that these concepts will interact with each other in meaning-
ful ways further down the reasoning stream. Perceptual modules (e.g., motion detection,
color perception) do deliver outpues that can be used for higher-level cognitive processes
such as object recognition and categorization, yet most of us continue ro think chat chese
lower-level processes are perceptual,

It is an important discovery that carly representations are amodal. However, the strong
cvidence that the number sense exists in visual, auditory, and action forms may not neces-
sarily argue for its conceprual content. In the case of the number sense, experiments wich
young infants using visuospacial arrays, sequences of sounds, and sequences of actions
all found that Weber’s law applics, just like it does for many other magnitudes such as
intensity of sounds, lengeh, and luminance level (sec Carey, 2009; Feigenson, Dehaene, &
Spelke, 2004 for reviews). Thus amodal representations are not necessarily conceptual.

Another important reason why one might question the conclusion thac the initial
primitives are fully conceprual is that there exist real discontinuities berween these prim-
itives and later, more mature concepts, which can be, for the most part, lexicalized and
tagged by mental symbols in language (e.g., dog, ball, 3, leff).

Take the case of object, a well-studied concepr in infancy. Carcy and Xu (2001) argued
that the properties we have evidence for in infancy for a concept of ebject could be thoughe
of as properties of a mid-level artention system (e.g., Kahneman, Treisman, & Gibbs, 1983;
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scholl, 2001 Scholl & Pylyshyn, 1999). The initial criteria for individuation and track-
ing identity are spatiotenporal (scc Spelke, Kestenbaum, Simons, & Wein, 1995;
Xu, 1999; Xu & Carey, 1996; but see Wilcox, 2003; Wilcox & Baillargeon, 1998; see Xu,
1007, for a review), whercas our critcria for bona fide sortal concepts dog or cup (Hirsch, 1982;
Macnamara, 1982; Xu, 1997, 2007) are kind-relevant criteria that are not part of a subsystem
of vision that relies on path and motion information for individuation and idenciry. Perhaps a
better cerm for the initial object concept is the “object sense;” an analogy to the “number sense”

Similarly, when we take a closer look at the evidence for the number concepe, chere
is strong evidence for an approximate number syscem—the “number sense” (Dehaene,
1997, 2011; Gallistel, 1990). This system, as has been argued by many, shares many prop-
erties of well-studied percepual systems for discriminating duracion, lightness, weight,
or length—for example, Weber's law applies (Brannon, Abborr, & Lutz, 2004; Lipton &
Spelke, 2003: Xu, 2003; Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005; sec Feigenson,
Dchaene, and Spelke, 2004, for a review and studies with preschoolers and adults). For
example, 6-month-old infants, and even newborns, can tell the difference between 6 and
18, 8 and 16, but noc 8 and 12; 9- to 10-month-old infancs can tell the difference berween 8
and 12 buc not 8 and 10. In other words, our initial numerical representations are approxi-
mate and nondiscrete, whercas the numerical concepts we need for learning the meaning
of number words (1, 2, 3, 4. 5, .. .) must be symbolic and discrete. Even more impor-
tantly, the “number sense” is nothing like the number line in its formal propertics: For the
number sense, the difference between 8 and 16 is not equal to the difference berween, say,
16 and 2.4; in face, the difference beeween 8 and 16 (3:2) is the same as that beeween 16 and
32 (1:2). To acquire the concepr of positive integer, learners would have to abandon every
belief (implicitly represented in the system for numerical reasoning) they had about how
numbers work and construct a brand new set of beliefs, such as how the successor func-
tion works, and how sets relate to each other and to the counting routine (Carey, 2009).

When it comes to learning the mcanings of number words (1, 2,3, 4, 5, .. .), there is
little dispute that genuine conceprual change is needed. Wynn (1990, 1992), Sarnecka
{2008), Sarnecka & Lee (2009), and Le Corre and Carey (2007), among others, docu-
mented the developmental time course of learning to meaning of positive integers. These
rescarchers discovered that children engage in the counting routine quite carly (a prac-
tice that is strongly encouraged in the average middle-class American houscholds}), buc
it takes children about a year and a half to figure out how counting works in terms of the
cardinality principle—children begin by figuring out the meaning of 1, then the mean-
ing of 2 after a few months, then the meaning of 3 after another few months, and so on.
Eventually they make the inductive leap that the nexe number on the counc list represents
“one more” from the one before, that is, the successor function.

A number of rescarchers have provided theoretical accounts of this developmental
process. Carey (2009) argues that the transition from prelinguistic represcntations of
numerosity to using symbols to think about numbers as referring to discrete quantities
requires genuine conceptual change. I agree—the prelinguistics systems of approximate
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for going beyond data and evidence to build larger conceprual structures. To date, we
have some evidence for each of these three types of learning in the domains that [ have

considered in the first part of this paper.

Language Learning as a Vebicle for Conceptual Change

If infants’ initial knowledge is not in the right format for language learning, and infants
begin to [earn the meaning-bearing parts of language in carnest toward the end of the
first year, some developmental changes need to take place. One hypothesis that has been
argued for in the licerature is the idea that various parts of language provide “placcholder
structures” for conceptual development (e.g., Carey, 20a9; Gelman, 2003; Xu, 200z,
2007; among others). Two case studies come to mind.

In research on whether infants’ representations of objects include the crucial ingredients
of sortal-kind representations, my colleagues and I have suggested that initially infancs in-
dividuate objects and track their identity by applying spatiotemporal criteria (c.g., since no
object can travel from point A to point B without traversinga connected path in between,
if that appcars to happen, it means that there are in fact ewo numerically distinct objects in
theevent). Quite a lot of empirical evidence seems to support this conclusion (c.g., Spelke
ct al, 1995; Xu & Carey, 1996; Wynn, 1992, among others). Later on, we have suggested,
infants begin to learn words for object kinds such as BALL, CUP, and DOG, and it is
through word learning that infants build new concepts that allow them to individuate and
track identity under sortal-kinds BALL, CUP, and DOG (sce Xu, 2007, for a review). The
words—count nouns that refer to sortal-kinds—impose certain constraints on the format
of the representations: Symbolic (often) refers to mueually exclusive categories that reflect

distinct underlying essences or causal structures, and support inferences at the level of kinds.

The case of number is similar, as sketched out earlier in the chapter. The prelinguistic
representations, especially the part that is genuinely a system capable of numerical com-
putations, the approximate number system, does not seem to play a role in acquiring the
meanings of number words. Instead, the counting list provides a placcholder structure
(Carey, 2009; Sarnecka & Carey, 2008) that imposes a st of constraints on the format
of the representations: symbolic, discrete, generated by the successor function, goes on to
infinity, among others.

Core knowledge systems may rely on language to become truly symbolic and dis-
crete, and this is a deep conceptual change that requires new representational resources
be constructed. The “language of thought™ may not have existed before these changes
have taken place, since by definition, the LOT is supposed to respect the syntactic
constraints of a natural language (c.g., Fodor, 1975). Note that this is not a Whorfian
idea—all languages have a sct of syntactic tools and these are, as far as I know, uni-
versal. Even if different languages express some ideas differently using different syn-
tactic devices, the totality of the thoughts we can entertain would remain the same
for all human learners. A child learning English and a child learning Chinese may use
different syntactic tools to transform core knowledge representations into symbolic
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and conceptual representarions, but ac the end of the day, the choughts thar can be
expressed in each language would be the same.

Bayesian Inductive Learning as a Tool  for Belief Revision

Much recent rescarch on cognitive development focuses on understanding seatistical

lcarning and probabilistic inference mechanisms (see Gopnik 8 Wellman 2012; Xu &
Kushnir, 2012, 2013 for reviews). This line of inquiry is lacgely inspired by the surge of
Bayesian compurtational models in cognitive science (sce Tenenbaum, Kemp, Griffichs,

8 Goodman. 2011, and Griffichs, Charer, Kemp, Perfors, & Tenenbaum,

2010 for
reviews),

Much of this work was motivated by the idea that we need an approach to cognitive

development tha is neicher extreme empiricism nor extreme nativism. Nativist theorics
have focused primarily on

specifying innate concepts and core knowledge systems, and
cpresentations underpin not only our mature conceptual system
but also that of infants and young children (c.g,, Chomsky, 1987; Fodor,
1984; Spelke, 1994), whereas empiricist theories have focused on specifying associarive
learning mechanisms and the graded nature of our learning and representations (c.g.
Elman et al,, 1996; Karmiloff-Smith, 1992; Smith, 2001). Neither view appears to

how abstract, symbolic r

1975; Pinker,

lies probabilistic models of cognition (Chater & Qaksford, 2008; Grifhiths ec al
Tencnbaum et al,, 2011). Several basic renets have been laid our
Kushnir, 2012):

- 2010}
elsewhere (sce Xu &

» Human learning is best described as 1 form of rational Bayesian inference: The
learner starts with some prior probability distribution over 1 set of hypoth-
eses and computes the posterior probabilities of these hypotheses given the
strength of the evidence as given by Bayes rule. This is a compucational level
characterization; that is, it describes the inferential process withour making
4 priori commitments ro how that process s instantiated at the algorithmic
level (what steps to follow when a learner wanes to solve a particular task)
(Marr, 1982).

* Hypothescs can be represented as probabilicy distributions. Inferences are proba-
bilistic and graded, so hypotheses are not simply ruled in or out. Instcad, learners

may be more or less confident abour the various hypotheses.

Learners represent the world not just by forming associations and correlations

but by constructing abstract, causal, generarive models,
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Some psychologists have used the phrase “learning by chinking” to refer to a set of cog-
nitive activities that (seemingly) generate “knowledge from nowhere” (T. Lombrozo,
personal communication). The basic idea is that our naive picture of leacning—that we
arc cxposed to various learnable faces in the world—is inadequate, and many celebrated
examples in the history of science show that scientists such as Galileo or Einstein arrived
at major scientific breakehroughs without the benefits of grants, graduate students, and
laboratories. Their scientific insights came from “mere thinking”—ways to organize and
extend what we already know by manipulating existing representations and data struc-
tures. Several such cognitive activities have been demonstrated in lay people and scien-
tists: explanation, analogy, mental simulacion, and thought experiments.

One well-studicd case is che self-explanation effect (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989: Chi, de Leeuw, Chiu, & LaVancher, 1994). In a typical expetiment, some
participants are told to explain to themsclves when given some math problems, while
others are asked to “think aloud” with cthe same set of math problems. The main finding
is that the explainers out-performed their nonexplaining counterparts, and the explainers
did better on transfer problems that went beyond the studicd examples. This appears to
be a clear case of generating new insights by manipulating existing data, and the mental
activicy of explanation plays a crucial role. More recently, Williams and Lombrozo (2010)
found that in a category lcarning task, participants who were asked to explain were more
likely to discover broad regularitics that provide an account of category structure, com-
pared to participants who were given free study time or were instructed to think aloud
during the study. Their idea is that explanation may generate new knowledge by encour-
aging learners to find underlying rules and regularities.

Work on analogy (most notably Christic & Gentner, zo10; Gentner, 1983; Holyoak,
2012) has suggested chat strucrural alignment is the mechanism by which a base domain
is mapped onto a targec domain. Such an alignment encourages the learner to sce the
structural similarities berween two domains and allow them to use their existing knowl-
edge in one content domain to understand the structure of a new content domain.

Other forms of “learning by thinking” include mental simulations and chought experi-
ments. Some rescarch suggests that we solve mechanical problems by mentally simulating
the process—appealing to these visuospatial representations provides solutions thar we do
not seem to have access to by verbally reasoning through the problem (e.g., Hegarty, 2004).
Thought experiments have been mostly studied in philosophy of science (e.g., Gendler, 1998,
2000). One celebrated example is how Galifeo worked out thac all objects, regardless of their
weight, would fall at the same speed (contrary to the then standard Aristotelian theory).

These learning processes are not driven by new data and new evidence. Instead, the
learner possesses the ability co manipulate existing representations and data structures in
the head, and new insights emerge. There exists some rescarch on how children use ex-
planation and analogy in learning (c.g., Christic & Gentner, 2010; Legare, z012; Legare,
Gelman, & Wellman, 2010); much more work is needed to truly understand how these
processes play a role in cognitive development.

A Rarional Construcrivist Approach to Cognitive Development 2

WHERE DO NEW CONCEPTS COME FROM AND IS LEARNING
ALL ABOUT HYPOTHESIS TESTING?

Each of the three types of learning mechanisms may give rise to new concepes. Language,
especially in the form of new lexical items (i.e., words), may provide the child wich the
first clue that a new concept needs to be constructed. Words themselves do not pro-
vide the contents of the new concepts {e.g., repeating the word red a thousand times to
a blind man is not going to ger him to perccive redness—I thank Lila Gleitman for this
example), yet words let learners create new mental symbols about which they can acquire
new beliefs. It is a thorny issuc whether at least some belicfs arc constitutive of concepts;
pcrsonally I think the answer is yes—I may be mistaken that there are only 10,000 cows
living in California (a mere belief) but I would have a different concept of cow from you
if I didn't chink that cows were animals. The process of acquiring new concepts may ac
least be partially dependent on acquiring the relevant core belicfs, I submic that it is a
real challenge to distinguish the core beliefs from the peripheral ones (e.g., Block, 1986).

Bayesian inference mechanisms areused widely for belicf revision, from low-level vision
to high-level language processing and learning. As beliefs are revised and small changes
become large ones, some concepes will become more central to reasoning than others. As
devclopment progresses, less important concepts may become more important, and vice
versa. This process may bring about genuine conceprual change of one kind: Given a net-
work of interrelated concepts, how central a parricular concept is may change over time.

Lastly, thought processes such as explanation and analogy may allow us ro sce new con-
nections that we had not been aware of before. Analogy lets us impose the structure of
one domain onto another domain, trying to fit all cthe pieces together in a new way. This
is one kind of conceprual change. Explanation lets us consider what the underlying causes
may be, and allows us to ignore outlier data in favor of a motc coherent overall picture.
Similarly, thought experiments make full use of our inductive reasoning prowess and let
us imagine scenarios that are not physically possible (e.g., travcling at the speed of light).

Although some have suggested that all learning is hypothesis testing (c.g., Fodor, 1981),
vatious developmental phenomena provide ample counter-evidence. If intuitive theories
are at the foundation of conceptual development and children progress from Theory 1
to Theory 2—thcories that have distinct causally central concepts—much like scientists,
then we need an account of concepeual change that goes beyond mere hypothesis testing
(see Carcy, 1985, 2009; Gopnik & Meltzoff, 1997, for reviews and explications).

CAVEATS AND OPEN QUESTIONS

Some caveats are in order and many open questions remain. First, although it is very impore-
anttocharacterize the initial state, understanding learningin Bayesian terms does notdepend
on it. This is because as long as we can specify the prior knowledge and biases—learned or
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innate—thar the lcarner comes to a task with, we can proceed to study how that person
combines prior knowledge with new evidence to choose among a set of hypotheses and to
update his or her belicfs. I think this is an important point and a “bonus” for thinking about
inductive learning as Bayesian updating. Second, most Bayesian models have focused on
modeling the data-driven processes. It is yet to be seen if these formal models can caprure
the cffects of language learning and “learning by thinking” (see Piantadosi, Goodman, &
‘Tenenbaum, 2012, and Ullman, Goodman, & Tenenbaum, 2012 for some examples), The
formal cools may become very useful when we want our assumptions and algorithms clearly

by focusing on the conceprutal idea of hypothesis-testing and belicf-revision. Third, it may
wurn ou to be the case that the mechanisms of learning discussed here would account for
the development of some aspects of core knowledge, bur the jury is still out. So far we have
not shown that any particular aspect of core knowledge is learned, but the developmental
changes we sce during the firse year of life suggest tha a learing story (as opposed to mere
macurational one) is possible. Fourth, many have asked the question, “Where do hypothe-
ses come from?” when we talk about Bayesian learning, and none ofus has a clear answer at
the moment. Here are ewo possibilities: Proto-conceptual primitives may provide an initial
hypothesis space, and non-data-driven cognitive activities may also generate new hypothe-
ses for the leamner along the way. Lastly, most developmental psychologists have focused on
demonstrating that infants and children learn quickly—within the time limits of 3 single,
15- to 20-minute, lab visic. However, long-term development and concepeual change are
surely more complicated. Not only do we keep track of statistical evidence over time and
across subdomains, we may also need the non-dara-driven cognitive activities such as expla-

nation, analogy, mental simulation, and thought cxperiments in order o achicve genuine,
qualitative conceprural change.
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