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PREFACE

Fei Xu1 and Tamar Kushnir2
1University of California, Berkeley
2Cornell University

What Is Rational Constructivism?

The main goal of this volume is to compile a set of papers synthesizing
new research from the last few years, under the umbrella term “a rational
constructivist approach” to the study of cognitive development. The papers
come in three flavors: syntheses of a body of empirical work and its theo-
retical underpinnings, explications of how computational models (especially
Bayesian models) may help us understand cognitive development, and
philosophical reflections on the research enterprise.

Much of this work was motivated by the idea that we need an approach
to cognitive development that is neither extreme empiricism nor extreme
nativism. Nativist theories have primarily focused on specifying innate
concepts and core knowledge systems, and how abstract, symbolic repre-
sentations underpin not only our mature conceptual system but also that of
infants and young children (Chomsky, 1988; Fodor, 1975; Pinker, 1994;
Spelke, 1994), whereas empiricist theories have focused on specifying
associative learning mechanisms and the graded nature of our learning and
representations (Elman et al., 1996; Karmiloff-Smith, 1992; Smith, 2001).
The inadequacy of both extreme nativist and extreme empiricist views has
led researchers to try to find a substantive middle ground (e.g. Johnson,
2010; Newcombe, 2010).

The new perspective on cognitive development represented in this
volume has been dubbed “rational constructivism” (e.g. Xu, 2007; Xu,
Dewar, & Perfors, 2009; Xu & Griffiths, 2011), as it blends elements of
a constructivist account of development with the account of learning as
rational statistical inference that underlies probabilistic models of cognition
(Chater & Oaksford, 2008; Griffiths, Chater, Kemp, Perfors, & Tenenbaum,
2010; Tenenbaum, Kemp, Griffiths, & Goodman 2011). Although the
work is still quite new and opinions differ, here are some tenets that we think
unite the rational constructivist approach.

• Human learning is best described as a form of rational Bayesian
inference: the learner starts with some prior probability
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distribution over a set of hypotheses, and computes the posterior
probabilities of these hypotheses given the strength of the
evidence as given by Bayes rule. This is a computational level
characterization; that is, it describes the inferential process
without making a priori commitments to how that process is
instantiated at the algorithmic level (Marr, 1982).

• Hypotheses can be represented as probability distributions.
Inferences are probabilistic and graded, so hypotheses are not
simply ruled in or out. Instead, learners may be more or less
confident about the various hypotheses.

• Learners represent the world not just by forming associations
and correlations, but by constructing abstract, causal, generative models.

• Learners acquire new concepts and biases in the course of
development; the newly acquired knowledge becomes part of
the prior and thus constrains subsequent learning.

• Domain-general learning mechanisms may give rise to domain-
specific knowledge.

• Representations may differ in their strengths; some support
predictions, actions, and explanations, while others may not.

• Learners are actively engaged in the learning process, from
infancy to adulthood.

How Is the Rational Constructivist View Different
from Other Views

We are in the early days of developing a new theory, and our thinking is still
evolving. In terms of how to characterize human knowledge, rational
constructivism fully endorses the view that human knowledge is best
characterized by symbols and rules (see e.g. Fodor & Pylyshyn, 1988;
Marcus, 2001; Pinker & Prince, 1988) and human learning is best captured
by inferential mechanisms, not just associative learning mechanisms. At the
same time, rational constructivism endorses the view that early learning is
statistical: the inferences and representations may be graded and partial,
much like what has been instantiated in neural networks (e.g. Elman et al.,
1996; Colunga & Smith, 2005; Karmiloff-Smith, 1992).

This view also departs from the traditional Piagetian view of develop-
ment (Piaget, 1954), in at least two waysddevelopment does not progress
through stages, driven by qualitative changes in the child’s logical capacities,
and development does not start with sensorimotor primitives and a lack of
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differentiation between the child and the world (see Carey, 2009, for
discussion). Instead, the construction of new concepts and new learning
biases are driven by a rational inferential learning process. It remains to be
seen how these inferential learning mechanisms account for the rapidly
developing domain knowledge in infants and how we might want to
rethink the issue of characterizing the initial state.

Some Answers, More Questions

The chapters in this book investigate the nature, power, and limits of these
early inductive learning mechanisms. They are a testament to the remarkable
progress that has been made, as well as to the number of unanswered
questions that remain. These questions are posed, and answers and specu-
lations are offered by many contributors:

1) How sophisticated are infants and young children’s probabilistic
inference mechanisms? What are the limits? This question is the
main focus of Chapters 1, 2, and 4, all of which provide evidence
for early rational inferential (as opposed to associative) learning.

2) Bayesian models provide good analyses of many aspects of
cognitive development at the computational level, but what are
the algorithms and how are they implemented in the neural
hardware? Chapter 6 offers a Bayesian account of the general
learning processes; Chapters 8 and 11 present Bayesian models
on social learning and number.

3) If infants are engaged in hypothesis testing, where do the
hypotheses come from? How do they construct the hypothesis
space? Chapters 3 and 13 take up these issues from different perspectives.

4) In many cases, children exhibit what seems to be quite irrational
behavior, and they make systematic errors in reasoning, at least
from the adult perspective. Can some of the differences between
children’s reasoning and adults’ be viewed through the lens of
rational constructivist learning? Chapters 7, 8, 9 provide
examples of how it might be possible to answer this question in
three different conceptual domains.

5) Social learning in infants and children has received much
attention in recent years. Chapters 5, 11, and 12 address issues in
this domain: is social learning rational? How can a rational
constructivist framework help explain social learning?

Preface xiii



6) Lastly, with limited amounts of evidence, infants and young
children can revise their beliefs and acquire new concepts. But
much learning in childhood takes place on a much larger
time-scale, and the conceptual change that results from such
learning is much more profound. It is an open question whether
the same underlying process can explain these long-term
changes and developments. Chapter 10 discusses these issues.
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The Probable and the Possible
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Abstract

How do infants predict the next future event, when such a prediction requires esti-
mating the event’s probability? The literature suggests that adult humans often fail this
task because their probability estimates are affected by heuristics and biases or because
they can reason about the frequency of classes of events but not about the probability
of single events. Recent evidence suggests instead that already at 12 months infants
have an intuitive notion of probability that applies to single, never experienced events
and that they may use it to predict what will happen next. We present a theory
according to which infants’ intuitive grasp of the probability of future events derives
from their representation of logically consistent future possibilities. We compare it and
other theories against the currently available data. Although the evidence does not
speak uniquely in favor of one theory, the results presented and the theories currently
being developed to account for them suggest that infants have surprisingly
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ISSN 0065-2407,
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All rights reserved. 1 j



sophisticated reasoning abilities. These conclusions are incompatible with most current
theories of adult logical and probabilistic reasoning.

The facts in logical space are the world
L. Wittgenstein, Tractatus, 1.13

1. INTRODUCTION

Often we have no idea what will happen next. We do it more often
than we think. One sign of proof is our survival, which requires us to
anticipate future events. True, we are not the only living beings on earth,
and so survival is not particularly indicative of any distinctive ability at
predicting the future. However, humans do more than just survive: they
radically modify their environment. Take a look at your surroundings and
estimate how much of your environment is comprised of man-made things.
Almost every single object in our natural environmentdby now, cities,
houses, offices, and not forests and prairiesdand almost every single action
we make drips with human inventiveness. This incredible richness is proof of
the continuous, neurotic pressure to plan and invent new things, to think
ahead at what happens if I do this and that, and to make and realize plans: an
ability that we can trace back to the beginning of the human species (Amati
& Shallice, 2007). We take all these for granted. Our question here is: if this
ability is based, among other things, upon the ability to think about the
future, how do we and when can we represent future states of affairs?

We should not expect to find a single answer to these questions.
Certainly, as David Hume famously argued (Hume, 2000), often even when
we think of simple physical events, experience is our guide to predict the
future. I have seen the sun rising in the past, and on the basis of this repeated
experience, I predict that the sun will rise tomorrow. Many organisms,
besides humans, can learn from the regularities around them (Hauser,
Newport, & Aslin, 2001; Toro & Trobal�on, 2005). However, equally often
we jump into the future with only a scant experience of the past. We can do
it in different, nonexclusive ways. We may anticipate novel future outcomes
because we possess hardwired systems that, in limited domains, generate
future states of affairs. Or we may freely combine already acquired
knowledge and information from different domains, although we have
never experienced that particular combination. We may also anticipate the
future in the absence of experience because we think that the next future

2 Nicol�o Cesana-Arlotti et al.



event logically follows from what we know: if I know that if John meets
Mary he will be happy, and I know that he will meet Mary tomorrow, I
need no experience to anticipate that tomorrow he will be happy. And,
given that (barring logical consequences) the future is the realm of uncer-
tainty, we may predict future events because we have a sense of what is likely
to follow. This paper mostly concerns these two notionsdlogic and
probabilitydand their interrelations. We want to first present a theory
about their relations. We will then present some relevant data about the
origin of these abilities. Finally, we will sketch some future directions of our
research.

2. CAN HUMANS REASON ABOUT THE PROBABLE
AND THE POSSIBLE?

That humans can reason logically, or probabilistically, cannot be taken for
granted. In fact, the bulk of the literature on adult human reasoning has been
taken to support the opposite conclusion: the existence of logical and
probabilistic abilities has been severely challenged. For logical reasoning,
since Wason’s famous work on the selection task (Wason, 1968), studies
showing logical mistakes have flourished (e.g. Evans, 1989). At best, logical
reasoning has been relegated to a secondary ability of minor importance.
Thus, the widely held dual process account (e.g. Evans, 2003, 2008;
Stanovich & West, 2000; Sloman, 1996) claims that two distinct cognitive
systems underline reasoning: an evolutionary primitive (set of) system(s),
providing preanalytic answers to problems (sometimes called System 1), and
a more recent system by which humans can achieve abstract thinking
(System 2). System 1, which we share with other animals, is considered to be
at the origin of most problem solving. It is a fast, nonverbal, emotionally
driven, associative, and intuitive source of responses to situations. It
generates answers that are driven by biases, heuristics, or pragmatic factors
and may thus lead humans to make many errors, when such nonlogical
strategies are inappropriate. By contrast, System 2 is described as a uniquely
human, verbal, explicit, serial, “rational” form of reasoning. Its advantage is
to permit abstract reasoning and hypothetical thinking, but its disadvantages
are many. It is slow, weak, easily overwhelmed by even minimally complex
problems and extremely variable among individuals. This theory, as Evans
wrote, “quite literally proposes the presence of two minds in one brain”
(Evans, 2003, p. 5).

The Probable and the Possible 3



If such a theory is correct, there is no point in writing this paper. Not only
are animals nonlinguistic beings but so are infants. Hence, by definition,
under this theory, they would only possess one of the two minds: the
intuitive, associative, and irrational mind. Fortunately, we believe that there
are empirical data and principled arguments to show that this is not the case.
For the moment, we only want to note that clearly the theory, which is based
entirely on experiments with adults, has not considered its developmental
implications. If System 2 is the explicit, logical, linguistic, and weak rational
reasoning system, how would it ever enter within an infant mind which only
contains System 1? The very same problems raised by Fodor against Piaget
many years ago (Piaget, Chomsky, & Piattelli-Palmarini, 1980) would
entirely apply to this theory, with equally devastating consequences.

To a first approximation, knowing how to deal with probabilities is even
more fundamental than the ability to reason about logic in order to antic-
ipate future events (but see later). But even in this domain, a long series of
studies championed by Tversky and Kahneman seems to suggest that
humans are very poor probabilistic reasoners (e.g. Tversky & Kahneman,
1974, 1981). When participants have to judge the likelihood of single future
events, their responses are driven not by rational evaluations of what is likely
to be the case but by heuristics and biases that may lead to serious mistakes.
Even apparent alternatives to the “Heuristics and Biases” theory, such as the
frequentist approach (Cosmides & Tooby, 1996; Gigerenzer & Hoffrage,
1995), share one point in common with it. They also consider human
abilities at handling logic and probability as severely constrained. For Cos-
mides, humans can reason logically only in limited contexts of social
exchange (Cosmides, 1989) but do not possess the ability to reason generally
with logical rules because evolution could not have favored the selection of
such a general-purpose reasoning mechanism.

These issues are inextricably linked with more general questions, spanning
from the nature of the mind to the foundations of probability. Let us briefly
see why. One of the main divides in the foundations of probabilities concerns
the status of attributions of probabilities to single events. On the one hand, it
looks very natural to say that I have a certain degree of belief that a future
event will occur. That is, intuitively we seem to think that there is nothing
wrong in saying that I am afraid that tomorrow it will rain. Translated in terms
of beliefs, this statement corresponds to a belief, with certain strength, that
tomorrow it will rain. In its turn, translated in terms of probabilities, this belief
may be interpreted as a certain internal state in which we attribute a degree of
probability to the future event “Tomorrow it will rain.” Thus, beliefs could
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be thought of as subjective degrees of probabilities about single future
events.1 However, according to frequentists, the reality of the world is that
tomorrow it will either rain or not rain: there is no sense in which tomorrow
“it will 60% rain.” Thus, so the argument goes, from a realistic standpoint,
single-case probabilities are meaningless. If one wants to make sense of
probabilities, the only way to do it is to treat probabilities as frequencies: the
subjective, Bayesian understanding of probabilities is irredeemably subjective
and, as such, should have no place in science. It should be clear now how far
a question about single-case prediction leads us into very controversial areas,
obliging us to take a standpoint on many vexed philosophical issues.

We can see the frequentist view as the psychological adaptation of the
frequentist point of view in probability. According to this theory, because
ontologically probabilities are frequencies, psychologically they can be under-
stood only as collections of experienced events. Cosmides and Tooby are quite
explicit about this.Our sense organs, so they argue, canonly discernwhat canbe
observed and “the ‘probability’ of a single event is intrinsically unobservable.”
Thus, again, evolution could not have selected amechanism computing single-
case probabilities. What, instead, we can observe are “encountered frequencies
of actual events” (Cosmides&Tooby, 1996, p. 15).Hence, frequencydetection
mechanisms, tracking collections of experienced events, could survive selective
pressure but not systems predicting the probability of single future events. We
do not want to comment on this evolutionary argument, which we believe to
be seriously flawed. We only want to notice that, taking this perspective to its
extreme consequences, we should conclude that our intuitions about the future
are entirely dependent on our experience of the past.

This brief review offers a bleak picture of human reasoning abilities. The
ability to draw logical inferences, to estimate the probability of the next
future event, and to base our predictions on such estimates are landmarks of
rational cognition. The fact that humans fail in both domains certainly does
not allow us to be optimistic about the rationality of mankind. Yet, recent
discoveries suggest that the bleak picture is only a partial reconstruction of the
real richness of human cognition, and not because humans possess a weak
System 2 that sometimes gets it right but because logical and probabilistic

1 For the purpose of this discussion, it is not important to take a stand as to whether
a Bayesian view of beliefs is a good account of beliefs. Our point here is only that there are
ways to naturally read degrees of beliefs as probabilities assigned to propositions, quite
independently of the computations of frequencies with which a certain proposition turns
out to be true.
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abilities are much deeper inside the fiber of the human mind. First, a wide set
of modeling and experimental studies shows that adults spontaneously make
predictions that are well captured by Bayesian models (e.g. Griffiths, Kemp,
& Tenenbaum, 2008; Griffiths & Tenenbaum, 2006; Tenenbaum, Griffiths,
& Kemp, 2006). Now, in a Bayesian approach, being rational is being able to
predict the next future event from a priori hypotheses about what will
happen and from the ability to revise them based on what really happened.
Such predictions cannot be formulated without the adequate logical and
probabilistic inferential mechanismsdthe very same ones that the heuristics
and biases and the dual process theories assume humans do not possess.

Second, recent studies on biased reasoning show that participants process
correct normative information (logical or probabilistic) even in tasks in which
they are influenced by heuristics or inwhich they are under cognitive load. For
example, DeNeys and Schaeken (2007) showed that the amount of pragmatic
interpretations of the meaning of utterances reduces in favor of their logical
interpretations under cognitive load. Likewise, in conditions in which beliefs
conflicted with reasoning structure, memory access to words that were asso-
ciated with beliefs was impaired, suggesting that at a fairly low level reasoning
inhibits the retrieval of nonlogical beliefs (De Neys & Franssens, 2009). These
data suggest that logical abilities do not reside only in the more effortful,
abstract, and frail component of the cognitive system but are as intuitive and
immediate as System 1 according to the dual process theory.

Third, previous and recent data, which theworksmentioned above nicely
complement, show that adults implicitly draw elementary logical inferences
when thinking about everyday situations (Braine, O’Brien, Noveck,
Samuels, Lea, Fisch et al., 1995; Lea&Mulligan, 2002; Lea,O’Brien, Fisch, &
Noveck, 1990), even when they are unaware of doing so (Reverberi,
Pischedda, Burigo, & Cherubini, 2012). Indeed, recent neuropsychological
data show that specific patterns of neural activities can predict participants’
sensitivity for the elementary logical structure of stories and formal problems,
but no neural pattern predicts the tendency to rely on (at least some) heuristics
(Reverberi, Bonatti, et al., 2012; Reverberi, Shallice, D’Agostini, Skrap, &
Bonatti, 2009). This result suggests that, if anything, logical processes in adults
occupy a more central role than heuristics.

The point we want to make is that from our current understanding of
reasoning a picture emerges that is much richer than the one advertised bymost
literature on adult reasoning. It suggests that theories that consider logical and
probabilistic reasoning processes of secondary importance in our mental life,
such as the dual process theory, cut the pie in the wrong way (De Neys, 2012).
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The dual process theory describes human reasoning as characterized by the
opposition between intuitive, fast, and immediate heuristics and a slow, verbal,
and frail logical reasoning. There is no such opposition. Instead, already at the
level of intuitiondas it were, deep down in the machinedhumans seem to
possess basic logical and probabilistic inferential devices. If so, then it is quite
possible that the samemachinery is already available at early, prelinguistic stages
of knowledge representation, as a foundation of the way humans think, orga-
nize their plans, and use their knowledge to predict future states of the world.
We now want to inspect this possibility and offer a theory about what this
machinery could provide to the overall efficiency of our cognitive processes.

3. INFANTS’ REASONING ABILITIES: DOMAIN-SPECIFIC
MECHANISMS, GENERAL SYSTEMS OF INFERENCES,
AND FUTURE PREDICTIONS

The last three decades of research have revealed the existence of several
domain-specific reasoning mechanisms that may guide infants in predicting
future situations in limited domains. Notably, we know that infants
understand basic physical principles (Baillargeon, Spelke, & Wasserman,
1985; Spelke, Breinlinger, Macomber, & Jacobson, 1992). They interpret
agents’ behaviors as goal-oriented (Woodward, 1998, 1999) optimal solu-
tions toward the realization of their intentions (Gergely & Csibra, 2003;
Gergely, N�adasdy, Csibra, & Bír�o, 1995). They possess dissociable systems
for precisely representing small arrays of individual objects and imprecisely
representing large quantities (e.g. Feigenson, 2005; Feigenson & Carey,
2005; Feigenson, Dehaene, & Spelke, 2004; Xu & Spelke, 2000).2

All the abilities we mentioned above have sometimes been described as
independent modules, or core domains, not necessarily interconnected.

2 While such abilities might be used proactively to predict the continuation of an event, we
have surprisingly little evidence that infants do indeed use such domain-specific knowl-
edge to proactively predict future events. The violation of expectation method, upon
which most of our knowledge about infants’ domain-specific abilities rests, allows us to
conclude that infant are surprised at a given (unexpected) outcome but not that they
predicted the opposite, expected, outcome. At least in the case of agency, we do know
that infants do not need to experience the end state of an action in order to attribute
a goal to the actor and infer a future goal state (Southgate & Csibra, 2009), but this
evidence is much less widespread than what one would need to prove that domain-s-
pecific systems are actively predicting future states of affairs. However, for the purpose of
this discussion, we will not distinguish surprise at an unexpected outcome and prediction
of the expected outcome, although they are possibly distinct.
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Indeed, according to some authors, it is the emergence of language that
allows humans to glue together originally separated, possibly noncommu-
nicating, information processors into a unitary cognitive architecture (e.g.
Carruthers, 2002; Mithen, 1996; Spelke, 2003). One consequence of this
thesis is that prelinguistic infants may not naturally integrate information
coming from different domain-specific mechanisms to reason about the
future optimally.

Yet infant cognition is not a simple collection of independent modules.
Infants also possess domain-general cognitive abilities. Of particular
importance is the ability to extract absolute and relative frequencies of
different kinds of events, such as speech events, or visual stimuli (Fiser &
Aslin, 2002; Saffran, Aslin, & Newport, 1996). This ability may help
explain how infants solve several learning problems in various domains.
However, frequency computations can guide future predictions only
through past experiences and hence are mute to the problem of whether
infants can reason about the future in the absence of past experience.
Abilities that are more difficult to explain on the basis of simple past
experience have been discovered by Xu and Garcia (2008) and Tégl�as,
Girotto, Gonzalez, and Bonatti (2007). Although these studies have
important differences that we will discuss below, both show that infants
intuitively make inferences about probabilities that do not require
frequency detection mechanisms and cannot be simply explained on the
basis of previous experience.

Xu and Garcia (2008) showed that infants seem to have an intuitive
grasp of the relation between samples and populations. Given a sample,
infants can infer the distribution of the population from which it had been
drawn. Conversely, given a full population, they expect a sample drawn
by it to reflect the distribution of the population. They are willing to infer
the statistical relations between samples and population only when samples
are randomly drawn (Xu & Denison, 2009), reinforcing the view that
infants have a basic grasp of random processesdprecisely what, according
to traditional studies in the heuristics and biases tradition (Gilovich, Val-
lone, & Tversky, 1985; Kahneman & Tversky, 1972; Tversky & Kah-
neman, 1993), adults often fail to display. While certainly the kinds of
situations tested by Tversky and Kahneman are more complex, the
contrast is intriguing. Xu and her colleagues also showed that infants are
able to integrate information from different sources in their inferences. At
11 months, they can use information about other people’s intention in
order to infer that a sampling process is random (Xu & Denison, 2009),
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and at 20 months, they also consider a violation in the randomness of
a drawing as evidence for the preferences of agents (Kushnir, Xu, &
Wellman, 2010). These findings point at the fact that infants’ reasoning is
more structured than what a passive, purely data-driven mechanism would
predict. General-purpose mechanisms transcending individual core
domains seem to be available early in development, enabling infants to
rationally exploit the relevant source of information when reasoning about
future states of affair.

While these results witness how rational infants can be in drawing
inferences in conditions of uncertainty, they do not clarify another
fundamental issue to understand whether infants can predict future
events: can they estimate the likelihood of single future events in the
absence of experience? This is what, according to frequentist theorists,
humans cannot do. Tégl�as et al. (2007) explored this issue and argued
that 12-month olds can do exactly that. Tégl�as and colleagues showed
infants a simple situation in which three yellow objects and one blue
object bounced inside a container with an opening on its lower side,
as in a lottery machine (Fig. 1.2, left). Objects could be grouped into
classes identified by the shape and color of the objects. After a period
in which the objects bounced inside the container, an occluder
covered its contents, so that the movements of the objects could not
be seen. Then, before the end of the occlusion period, one of the
objects exited the container. Finally, the occluder faded out and
infants could look at the final scene. In the absence of any other
information, a sense of probability would lead one to expect that one
object of the most represented class would exit the container. Indeed,
infants looked longer at the improbable outcome, in which the single
object exited the container, signaling their surprise at an improbable
single outcome.

Crucially, in this experiment, infants could predict the next single future
event without having ever experienced it. In order to explain how infants
could do that, it is not sufficient to postulate that infants have simple
frequency detection mechanisms that track distributions of traits in samples
and populations. Even in a frequentist view, infants could grasp such rela-
tions, and yet be unable to make single-case predictions about inexperienced
outcomes. Something more is needed: an intuition of the probability of the
next future event, that is, exactly the kind of intuition that, according to
both the frequentist and the heuristics and biases views of human reasoning,
adults do not possess.
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4. A THEORY OF PROBABILISTIC REASONING: FROM
LOGICAL REPRESENTATIONS TO SINGLE-CASE
PROBABILITIES

We have argued that evidence exists that infants have an intuitive under-
standing of probabilities that is much more developed than most current
theories of adult reasoning would incline one to think. However, we have
made no mention of infants’ logical abilities. The reason is simple: there is no
information on this topic. What we want to do now is to speculate on how
a theory of logical abilities could also explain infants’ probabilistic reasoning.
We first explicate the theory, and then we will discuss some of its
consequences.

Let us ask the following question: How would a mechanism estimating
the likelihood of single future events in the absence of experience look like?
Here is a possible answer. Consider, as an example, the stimuli used by
Tégl�as et al. (2007): a lottery-like container with three yellow objects and
one blue one randomly bouncing inside it (Fig. 1.1A). One can consider it
simply as it isda container with four moving objects. However, the scene
can also be represented in a modal way. Beyond its “face” appearance, the
scene also individuates a series of logically possible future states of affairs: one
in which a blue object exits the container and three in which a yellow object
exits (Fig. 1.1B). We need no experience to conceive of such possibilities,
provided that we can represent the logical space defined by the scene,
compatible with some basic properties of our physical world such as object
permanence and solidity. This modal nature of scenes and objects, we
believe, was behind Wittgenstein’s intuition that “the world is defined by
the facts in logical space”: metaphysically, a fact is already located in a logical
space. Psychologically, we suggest, a fact is conceived as already carving
possible future worlds that are compatible with it.

Thus, suppose that when infants look at a scene, not only do they
represent the events and the classes of objects it contains (Fig. 1.1A) but they
also construct its possible future outcomes (Fig. 1.1B). Suppose further that
such possible outcomes can be coded by an appropriate numerical repre-
sentation (Fig. 1.1C)dwhether it be arrays of individual possible occur-
rences or a representation of the ratio between classes of possible events,
regardless of their precise number. Then, under the assumption that all such
logically possible outcomes are equiprobable, infants could also represent
and estimate the probability that a single outcome (such as “a blue object
exits the container”) will occur (Fig. 1.1E) by comparing the number of
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possible outcomes in which the events of each kind take place (Fig. 1.1D). In
short, we propose that a logical sense of possibility is the foundation of an
intuition of the probability of single future events.

That the psychological concept of probability may derive from the
concept of possibility was proposed by Johnson-Laird, Legrenzi, Girotto,
Legrenzi, and Caverni (1999) within the framework of the mental model
theory (Johnson-Laird, 1983). Technically, their theory of modal reasoning
was an extension of the mental models’ theory of propositional reasoning
(Johnson-Laird, Byrne, & Schaeken, 1992). The soundness of this theory
can be doubted (Bonatti, 1994; O’Brien, Braine, & Yang, 1994) and with it
the soundness of its modal version. However, the intuition that the concept
of probability depends on the concept of possibility is independent of the
particular implementation that the theory of mental models gave to it and, in
our opinion, remains entirely valid.

The view that the possibilities afforded by the logical space circumscribed
by the scene, and not past familiarity with its outcomes, is at the basis of our

Figure 1.1 From possibilities to probabilities. A representation of how infants might
reason about the probability of a single future event. When inspecting a scene (A),
infants create a modal representation of it, hence representing its possible future
outcomes (B). If this representation can access infants’ numerical systems (C), the
probability of the next future outcome can be computed independently of any expe-
rience (D). Such a computation can be the basis for predicting the next more likely
single outcome (E). The scenes are schematic reproductions of the kinds of events
presented to 12-month olds and older children in the studies described in the article
(Tégl�as et al., 2007). In the first scene, the number of objects of different classes affords
the cue to compute possible next states of affairs. In the second scene, the frame
containing the single object offers the cue to project possible future outcomes. For
color version of this figure, the reader is referred to the online version of this book.
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intuitions of probability predicts that infants will have expectations about
future events independently of frequency computations or of the relation
between populations and samples. Furthermore, the view predicts that, all
other things being equal, an intuition of probability will be unaffected by
biases. All these, of course, must be proved.

5. INFANTS’ EXPECTATIONS ABOUT THE PROBABLE
FUTURE

There is a difficulty we must examine, before seeing how the theory might
work. Is it possible to even get the idea of studying infants’ intuitions about
possibilities and probabilities off the ground? One immediate objection that
would make our proposal not viable can be quickly formulated as follows:
how could infants even figure out the space of logical possibilities? How are
they supposed to identify what may be going to happen next? Will all
objects exit the container? Only one? Perhaps two? Or will they all disappear
or fly away? In principle, every scene is compatible with an infinite set of
possibilities, out of which only few are relevant for the appropriate
predictions. If we can speak and understand language, then delimiting the
space is very simple: we can just tell what the relevant space is. We can ask,
“What is the probability that the next object that comes out will be blue?,”
thus selecting some among the many possible relevant outcomes within
a scene that must be considered in order to answer the question. Language is
a very powerful tool that acts as selector for the relevant problem space. We
have no such luxury with infants. They observe the world as it is, not as we
describe it, and world scenes per se contain no explicit cue to the infor-
mation relevant to constrain the space over which to reason about future
events.

While ultimately general solutions to such questions are as hard as the
frame problem, if infants can be cued to attend to a relevant solution space,
then the problem is not unsolvable. Indeed, research in our laboratory
suggests that an appropriate familiarization can be used (and must be used) to
focus infants’ attention to the relevant outcomes (Tégl�as & Bonatti, 2008).
Thus, if infants are familiarized with one particular outcome among the
many possible outcomes of a scene (in our example, if they are familiarized
with a lottery-like scene in which one and only one object exits the device),
then they will reason about the probability of the expected outcome. If,
instead, infants are familiarized with the same situation, but no final outcome
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is ever shown, then they will not focus on the outcome of interest during the
test phase and they will not form probabilistic expectations related to it.
Infants must be cued to the relevant outcomes of a scene in order to reason
about its possible future continuations. Also this behavior is entirely rational:
if there is no way to represent the logical space of possible outcomes, then
there is no way to predict which outcome will be more likely. Of course, the
familiarization must give information about what kind of outcome to expect
in the test scenes but not about its probabilities. In the case of the studies by
Tégl�as and his colleagues, for example, infants were familiarized with four
lottery-like scenes that contained objects of two classes of equal cardinality,
so that the exit of an object of either one or the other class was equiprobable.
In each of these familiarization movies, they saw one object (always
a different one) exiting the container. Thus, although infants were famil-
iarized with the outcomes of the scenes, they did not possess information
leading them to expect one particular outcome. It could be said that also
these familiarizations count as “previous experience” and, therefore, that
frequentists are right that reasoning about the future requires past experi-
ence. We do not feel that this counter-objection describes the situation
correctly. All the previous experience given in the experiments we described
contains no information to bias infants to expect one particular outcome.
Thus, these observations cannot be the basis of infants’ responses when they
are presented with the test situations, in which the class distribution of
objects inside the containers is unbalanced. If anything, this brief familiar-
ization might be used by infants to form expectations about the equiprob-
ability of outcomes. Hence any outcome in the test phase (whether being
the exit of an object of the most numerous class, or an object of the less
numerous class) should appear as equally surprising. This is not, however,
how infants react.

Here, we will not pursue the interesting question about the relation
between experience, reasoning, familiarization, and test in experiments any
further. In this context, we only want to make the point that infants can be
cued into the dimension of what constitutes a relevant outcome, even
without language. Language, we submit, is a useful tool to trim the infinite
amount of possible continuations of a scene to the relevant class of
outcomes. In this property resides its power to help us reason. But it is by no
means necessary to reason logically or probabilistically. Provided that infants
are cued into the dimension that makes a particular outcome the relevant
one, then we can also probe how and whether they represent the relevant
future possibilities.
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In the experiments by Tégl�as et al., infants were first primed to the
relevant solution space by movies that showed one single object exiting the
containerda condition for the experiments to succeed. Then they saw
movies terminating with the “probable” and “improbable” outcomes we
described (Fig. 1.2, Scene A). As recalled, infants looked significantly longer
at the improbable outcome, when the single object exited the container
after an occlusion period, than at the more probable outcome in which one
of the three identical objects exited. Importantly, Tégl�as et al. also showed
that when a bar in the middle of the frame made it physically impossible for
the three identical objects to reach the exit, infants inverted their prefer-
ences, looking longer at events in which one of them would exit (Fig. 1.2,
Scene B). According to the theory of intuitive probability we are proposing,
without the need to previously experienced distributions, infants naturally
expect the more probable outcome based on the possible logical outcomes

Figure 1.2 From probabilities to impossibilities. Both scenes have the same outcome:
a yellow cubic object exits the container. However, in Scene A, the outcome is the most
probable one, whereas in Scene B, it is impossible. Infants look at the outcome of Scene
B longer when they find a cubic yellow object than when they find the single blue
object, but look at the outcome of Scene A longer when they find the single blue object
than when they find a cubic yellow object (Tégl�as et al., 2007). However, the config-
urational and low-level perceptual properties of the outcomes of Scenes A and B are
highly similar. This inversion in looking pattern suggests that infants can consider the
probability of an outcome just as efficiently as they consider its physical possibility, and
are able to use the most efficient cues afforded by a scene to ground their expectations.
For interpretation of the references to color in this figure legend, the reader is referred
to the online version of this book.
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of a scene. In the case of the simple lottery experiment, the (relevant)
possible outcomes are the single outcome case in which a blue object exits
the container and the three outcomes in which a yellow object exits. When
a bar blocks the exits of the three yellow objects, then the only possible
outcome is that in which a blue object exits the container. The computation
we sketched above predicts exactly the pattern of inversion in looking time
found by Tégl�as et al. (2007).

The fact that infants inverted their looking behavior when they saw the
container with or without a bar in the middle also allows us to drive home
another point concerning the relation between reasoning and biases at the
origin of cognition. We know little of what a bias could be in an infant
mind. However, if low-level factors such as perceptual grouping, or possible
least effort strategies such as tracking the minimal number of objects, or
intrinsic preferences such as a penchant for single-object outcomes count as
proto-heuristics, then the inversion in looking patterns excludes that infants’
reactions could be due to them. Of course the fact that infants’ responses are
not led by such proto-heuristics does not exclude that other, more complex
problems require solutions based on heuristics. For example, the problems
tested by Tversky and Kahneman, where the effect of heuristics appears, are
far more complex than those studied by Tégl�as et al. (2007). Because it is
almost impossible to test the same problems with 12-month-old infants, the
issue is difficult to explore. However, the results of Tégl�as et al. at least
suffice to establish that simple heuristics that could play a role in infants’
reactions do not necessarily lead infants’ reasoning astray. Thus, they open
the possibility that the heuristics and biases present in adult reasoning are not
immutable features of the human mind as the dual process theory holds.
Instead, they may be spurious by-products of complex interactions between
experience and mental mechanisms during development, rather than the
product of our evolutionary history. Their explanation can be approached
developmentally by studying their origins and the conditions under which
they are formed.

6. INTUITIVE STATISTICS AND LOGICAL INTUITIONS OF
PROBABILITIES: CONFLICTING OR COMPLEMENTARY
EXPLANATIONS?

We proposed to explain the result of Tégl�as et al. by assuming that infants
represent the (relevant) logically possible outcomes of a scene and, from them,
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form expectations about the most probable next future event. However,
other alternative explanations are possible. In particular, we see an account
along the lines of the theory proposed by Xu and Garcia (2008) that only
appeals to intuitive statistics. Such an account would not need to postulate the
representation of a space of future possibilities, and it may work equally well.

According to the intuitive probability proposal, infants represent
a problem space as a small set of possible, yet never occurred, mutually
exclusive events. Instead, an explanation based on intuitive statistics would
consider the estimation of the probability of an event not yet encountered in
terms of its relationship with an actual, perceived, distribution. Because in
lottery experiments by Tégl�as et al. infants always have the full population
in front of them, it could be possible to explain the results in terms of intuitive
statistics as follows. Suppose that infants consider the objects inside the
container (say, three yellow and one blue) as the full population of reference
and the exit of one object from the container as a randomly drawn sample
extracted from that population. Then, the exit of one yellow object will be
less surprising because it would be considered as the draw of a one-object
sample that better matches the distribution of the population than the draw of
a one-object sample that contains the only existing blue object. Such
reasoning does not require that infants conceive the space of the relevant
possible outcomes. The full population is in front of them and they can
directly compare the sample to the population distribution. This explanation
might also account for the inversion of looking time between the situation in
which every object could fall out of the container and the situation in which
a bar blocked the yellow objects from reaching the exit. It might be possible
to think that, when the bar isolates the three yellow objects, infants think that
the population distribution from which the sample is drawn changes and
consists only of the single blue object. Accordingly, they form the expec-
tation that the one-object sample must be blue because it corresponds to the
full population, which, again, infants have in front of them.

Data collected by Denison and Xu (2010) seem to support this inter-
pretation. The authors showed 14-month-old infants one transparent jar
containing 50 lollipops of two colors, with a ratio of 4:1, and another jar
with the same number of lollipops but with the ratio between colors
inverted. The authors first established what color each individual infant
preferred. Then, they presented the two jars to infants and two empty cups.
After infants saw the content of the jars, one lollipop from the first jar was
put in one of the cups and a lollipop from the second jar was put in the
second cup. The action was executed in such a way that infants could see
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from what jar the lollipops were drawn but not the lollipops’ colors. Finally,
infants were left free to grab the cup they preferred. Denison and Xu found
that infants chose the cup containing the lollipop taken from the jar with the
higher proportion of lollipop of their favorite colors. This result does not
have a straightforward interpretation in terms of the theory we proposed. It
is arguably implausible to suppose that infants solve the task by relating the
two possible outcomes (a pink lollipop or a black lollipop) to the space of
logically possible outcomes afforded by the objects present in the scene.
Representing such logical space would involve representing a set of distinct,
mutually exclusive, possible events that is just too big to be represented.

However, other results seem easier to account for in the framework we
propose but do not have a straightforward explanation in terms of intuitive
statistics, insofar as this explanation requires a computation based on
a perceived population distribution. Tégl�as et al. (2007) and ) tested infants
and children with a second type of scene, which differed in one crucial
aspect from the lottery scenes (Fig. 1.1, right). It presented a ball bouncing
inside a box with one hole in a vertical wall and three holes in the opposite
vertical wall. After some time in which infants and children could see the ball
freely bouncing inside, an occluder covered the box. Care was taken to
ensure that the position and last trajectory of the ball right before the
occlusion was uninformative about the side from which it would eventually
exit. Finally, the ball exited the box from one of the sides. ) showed that 12-
month-old infants looked longer at the improbable exit (the one-hole side)
than at the probable exit. Likewise showed that children react faster when
they have to guess that the ball will exit the three-hole side.

Just as the lottery scene, this kind of scene individuates four logically
possible outcomes. The ball can exit from the only hole on the one side or
else from the upper, the middle, or the lower holes on the other side. Thus,
according to our theory of intuitive probability, reasoners should expect the
ball to exit from the three-hole side, rather than from the one-hole side
because one kind of events (say, exiting from the left side) occurs in three
possible future continuations of the scene whereas another kind of events
(say, exiting from the right side) only occurs in one possible future contin-
uation. Indeed, infants and children behaved as predicted by our theory.
However, is it possible to make the same prediction in terms of an intuitive
statistics theory? We do not find it that simple. According to this theory, the
ability to estimate the probability of a future single event’s probability is
derivative of the ability to grasp the relation between a sample and
a perceived population. However, in the case of the ball in the box, there is

The Probable and the Possible 17



no perceivable population distribution of which the exit of the ball from
a particular side is a sample.Whatever happens, it happens only in the mind of
the observer: if infants and children anticipate where the ball will exit, they do
it by constructing a problem space of mental possibilities, on the basis of
which they form their intuitions of the probability of future outcomes.

7. INFANT RATIONALITY AND SIMULATIONS: YET
A THIRD ALTERNATIVE?

Recently Tégl�as et al. (2011) showed that infants’ probabilistic reasoning
abilities are even more sophisticated than what we have been discussing so
far. As we recalled, any scene contains multiple kinds of information. An
optimal reasoner should be able to decide which ones are relevant in
a particular situation, as well as weight their relevance for the problem at
hand. Furthermore, such evaluations must adapt dynamically because small
changes in a developing situation can change their relative importance.
Tégl�as et al. (2011) operationalized the investigation on infants’ abilities to
weight and integrate different changing cues in their predictions about
future events by modifying crucial aspects of the scenes tested by Tégl�as et al.
(2007). Infants were always presented with simple situations in which three
yellow and one blue object bounced inside a lottery-like container.
However, first, the objects of either categories could be either far or distant
from the exit before the occluder covered the content of the box (Fig. 1.1).
Second, the length of the occlusion separating the last moment in which the
objects were visible before the occlusion and the first moment in which one
of the object exited the container varied. Thus, the experiments varied the
relevance of two cues: how distant an object is from the exit and how many
objects of different classes are in the container.

The logic of these experiments was as follows. When objects cannot be
seen for a very short time because an extremely short occlusion hides them
from sight, then the distance of an object from the exit, and not its class
membership, should be the most relevant cue to predict the next future
outcome. Indeed, it would be almost impossible in an extremely short time
for a distant object to exit the container; so, infants should expect that the
first object to exit the container is the one that was closest to the exit before
the short occlusion, regardless of its class membership. On the other hand,
when the objects cannot be seen for a long period, because they keep
moving inside the container, their locations prior to the occlusion is
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irrelevant. Surely, they changed positions many times during the occlusion
period and hence where they were the last time one could see them is not
predictive of where they will be after the occlusion. However, the shape and
color of the object do not change. Thus, in this case, only the class
membership of the objects (whether they belong to the most represented or
to the less represented class) should matter. Thus, an optimal rational
prediction of the outcomes should consider at least two aspects of the
situation: the number of objects per category and the relative distance of the
objects from the exit. Moreover, the relative importance of these two factors
should vary depending on the length of the occlusion. Indeed, as indicated
by their looking time at the final outcomes, infants only considered the
relative distance of the objects from the exit, but not their categories or
category distribution, when the occlusion was 0.04-s long. When the
occlusion increased to 1 s, they considered both factors. Finally, when the
occlusion was 2-s long, they only considered the category membership of
the objects, but not their distance from the exit, to form their expectations.
Thus, infants behaved as optimal rational agents. Tégl�as et al. (2011) also
specified the formal way in which infants can be said to be optimal rational
agents. They proposed a probabilistic model in which a Bayesian ideal
observer equipped with basic knowledge of an objects’ physical properties
quantitatively predicts infants’ looking behavior. Intuitively, the model
simulates the possible trajectories of the objects as temporal series of possible
world states, where the expectation of an outcome (i.e. one blue object exits
first at a given time) is a function of how many trajectories are compatible
with that outcome. The model fits impressively well with the infants’
looking times in this as well as in many other studies, opening the possibility
that a Bayesian inference system could be part of the explanation of many
known results in infants’ cognition of objects and events in the world.

Is the explanation proposed by Tégl�as et al. (2011) yet a third theory of
infants’ reasoning about the uncertain future? The fact that the model uses
the simulation of physical trajectories to make its prediction may suggest that
infants’ expectations are based on simulation mechanisms reproducing
object trajectories analogically, a view akin to a mental model theory of
mental processes. Although this is a possibility, it is in no way mandated by
the model proposed by Tégl�as et al. (2011). Such a model does not carry any
commitment to the format of the internal representations on the basis of
which infants form their expectations. That is, it is compatible both with
a view of mental processes that takes seriously the existence of “analog
simulations” in the mind or else with a view that conceives simulations as
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knowledge-based symbol manipulations. The case is no different from the
debate about the nature of imagery (Pylyshyn, 1973, 1980, 2002, 2007).

Although the exact format of the internal representation underlying
infants’ abilities at integrating different information cannot be established,
adult data suggest that humans are extremely poor at reconstructing in
imagination quite simple dynamical scenes, giving chronometric and explicit
responses that seem incompatible with the presence of an underlying analog
simulation (Levillain & Bonatti, 2011). These data would seem to cast
doubts about the existence of analog simulations in infants as well.

Our point, in this context, is that the Bayesian model elaborated by
Tégl�as et al. (2011) does not force upon us a theory that assumes the exis-
tence of mental analog simulations. Indeed, the details of the simulations are
not so important. Tégl�as et al. showed that the simulations needed to
account for infants’ behavior can be dramatically curtaileddfrom several
thousands to fourdwithout loss of predictability (Tégl�as et al., 2011,
supplementary material). The resilience of the model under severe resource
limitations suggests that the specific details of the simulations are not what
that carries its explanatory power but, rather, the ability to represent alter-
native situations and conceive their possible outcomes. What, instead,
cannot be eliminated or reduced from the model is the presence of
a sophisticated inference device incorporating logical operations about real
and possible future states (Perfors, Tenenbaum, Griffiths, & Xu, 2011). The
postulation of the existence of this particular representational ability, which
is highly consistent with the theory we proposed, is what we believe will
become one of the major focuses of research in the next years.

8. WHAT ABOUT “EXPERIENCED FREQUENCIES”?

We have discussed two theories about intuitive understanding of
probabilities, and we have tried to speculate about how they could account
for some results about infants’ probabilistic reasoning. We have shown that
they can both predict some of the existing data but also that both have
difficulties at predicting other data. The discussion may suggest that infants
may have access to different computations that both allow, in certain cases,
to predict the probability of single future events. Infants can predict a future
event by seeing it as a sample of a perceived distribution. They can also
predict a future event representing a space of logically possible outcomes and
locating it inside that space. Further research is needed to explore this
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possibility. However, one point that the data and the explanations we
presented should drive home is that infants’ reasoning about the probable
future cannot be explained on the basis of elementary perceptual biases nor
on the basis of simple frequency mechanisms. To which we finally turn.

Both our proposal and the intuitive statistics theory postulate compu-
tational mechanisms that cannot be reduced to the ubiquitous frequency
detection abilities that have been often documented in infants and adults.
What, then, is the role of the “encountered frequency” of events that,
according to the frequentist theory, are at the basis of our reasoning about
distributions? We do not know whether and how infants integrate
frequency information potentially in conflict with their initial intuitions of
probability, but Tégl�as et al. explored this issue at least in 5-year olds.
Children were shown situations where a ball inside a container with three
exits on one side and one exit on the other side bounces randomly, even-
tually exiting the container (Fig. 1.1, right). The intuitive probability
afforded by the device should lead one to predict a more likely exit from the
three-exit side. However, by repeatedly presenting a scene ending with the
ball exiting from the one-exit side, a conflict between a priori probability
afforded by the situation and actual frequency of outcomes arose. Children
had to press a button when the ball exited the container after an occlusion
period that obliged them to react from their representations of the scene.
Before their responses, they were also asked to give explicit judgments about
what outcome they thought more likely. Finally, after being exposed for
a while to the actual frequencies of outcomes, they were asked again an
explicit judgment about what outcome occurred most.

Initially, both children’s motor responses and their explicit judgments
were influenced by the intuition that the ball had more chances to exit from
the three-exit side. Also, after experiencing the frequencies of outcomes,
when such frequency conflicted with the initial intuitions, children motor
responses adapted to the distribution: after some time, children reacted faster
when the ball exited the one-hole side. However, their explicit judgments
did not adapt to frequencies. Even after seeing the ball exiting the one-exit
side 75% of the time, children maintained that the ball was more likely to exit
the three-hole side, as if the main factor determining their explicit judgments
were, not their experience with the outcomes, but the representation of the
logical possibilities afforded by the scene. So frequency does have an effect,
but not where the frequentists would predict it. In our experiments, it
affected motor responses, but not judgments about probabilities. That is,
experience molds the way we act, but not necessarily the way we think.
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9. THE FUTURE OF PREDICTIONS ABOUT THE FUTURE

The theory we proposed asks us to seriously consider the possibility
that infants are little logicians, who can create logical representations of
situations and make inferences from them in a rational way. Infants do seem
to use abstract logical operators when acquiring rules (Marcus, Vijayan, Rao,
& Vishton, 1999), creating representations of sets (Feigenson & Halberda,
2004), or learning words (Halberda, 2003). And by now there is good
evidence that toddlers spontaneously engage in a form of exploratory play
that can be described as a kind of rational hypothesis testing and confir-
mation (Bonawitz et al., 2010; Cook, Goodman, & Schulz, 2011; Gweon &
Schulz, 2011; Schulz, Standing, & Bonawitz, 2008), suggesting the presence
of very advanced logical representations needed to formulate and test
hypotheses. But researchers have just begun to scratch the surface of the
problem of determining the nature of infants’ logical representations, and
evidence to inform us about the existence, the format, and the extent of such
representations is entirely lacking. Equally poor is our understanding of the
relation between the representations of future possibilities afforded by
a scene and infants’ different systems for representing quantities. These are
questions that we find fascinating and that will draw our attention in the
coming years.

Yet, even in the current defective state of knowledge, we now know
that infants can predict the uncertain future far better than a picture of early
cognition as a collection of different encapsulated systems would suggest.
This conclusion does not square with most theories about human reasoning
and certainly seriously puts into question the currently popular dual process
approach to human reasoning. There is an empirical and theoretical space
that most of that literature missed. It demands to be explored and perhaps
will help us tell a piece of the story about the inventiveness of human
thought.
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Abstract

In this chapter, we review empirical evidence in support of infants’ ability to make
rudimentary probabilistic inferences. A recent surge of research in cognitive devel-
opmental psychology examines whether human learners, from infancy through
adulthood, reason in ways consistent with Bayesian inference. However, when
exploring this question an important first step is to identify the available inference
mechanisms and computational machinery that might allow infants and young
children to make inductive inferences. A number of recent studies have asked if
infants may be “intuitive statisticians,” making inferences about the relationship
between samples and populations in both looking-time and choice tasks. Further-
more, infants make these inferences under a variety of sampling conditions and
integrate prior domain knowledge into their probability calculations. The compe-
tences demonstrated in the reviewed experiments appear to draw on an intuitive
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probability notion that is early emerging and does not appear to be available for
conscious reflection.

1. INTRODUCTION

What is the nature of early learning in infants and young children?
What kinds of learning mechanisms are responsible for the rapidly devel-
oping knowledgedabout objects, people, causality, and numbersdthat we
see in infancy and beyond? Are we rational learners and can rational
computational models capture human behavior? These questions have
been of great interest to psychologists for many decades. In this paper, we
focus on a body of new empirical evidence from infants that tries to answer
some of these questions.

The ability tomake accurate inductive inferences based on limited data has
implications for the longstanding debates in cognitive developmental
psychology concerning the initial state of human learners and the learning
mechanisms that can support conceptual development (e.g. Carey, 2009;
Elman et al., 1996; Hirschfeld & Gelman, 1994; Smith, 2001; Spelke, 1994).
Throughout the history of developmental psychology, these debates have
divided developmental theorists into two opposing groups. One group, the
nativists, tends to grant the human infant a great deal of initial conceptual
knowledge. This theoretical outlook is usually coupled with the assumption
that limited learning mechanisms need to be posited to support conceptual
development and that many developmental changesmay be accounted for by
brain maturation. The other group, the empiricists, tends to posit that human
infants start out with only perceptual primitives and that they lack initial
conceptual knowledge. This theoretical commitment is typically paired with
the assumption that associative learning mechanisms are responsible for the
accumulation of conceptual knowledge and conceptual change. Further-
more, developmental psychologists who fall in the nativist camp, positing
early conceptual knowledge andminimal learning, tend to advocate domain-
specific learning mechanisms. Conversely, those who fall in the empiricist
camp, positing early perceptual processing and a large role for learning, tend to
advocate data-driven, domain-general learning mechanisms.

Traditionally, developmental psychologists have taken a strong stance
on both these debates, placing themselves clearly on one side of the
theoretical fence or the other. However, as both sides have provided more
and more evidence in favor of their respective viewpoints, it has become
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increasingly clear that some philosophies from both camps are likely to
have merit, while other aspects continually lack explanatory power for
some phenomena. Take, for example, the domain of word learning,
where a satisfying theory must account for a number of known
phenomena. Empiricist accounts of word learning (e.g. Colunga & Smith,
2005; Regier, 2003, 2005) account reasonably well for the fact that
children are capable of learning words at multiple levels of taxonomic
hierarchies (e.g. they learn words such as animal, dog, and poodle).
However, they have difficulty dealing with the fact that children are able
to learn the meaning of new words after observing very small numbers of
exemplars, a phenomenon called fast mapping, as the learning mechanisms
typically posited by these accounts require a large number of object and
label pairings to acquire new words. Conversely, more nativist approaches
to word learning, which posit a number of innate constraints, can account
for fast mapping but they have difficulty accounting for how children
acquire words at multiple levels of a taxonomy (e.g. Markman, 1989;
Siskind, 1996). Thus, both nativist and empiricist approaches appear to
deal quite readily with some aspects of word learning, but others simply
cannot be explained. Unfortunately, the problem with confessing that
both camps get parts of the argument right, and parts of the argument
wrong, is that this can be viewed as theoretical fence sitting, which is
typically frowned upon in science. Nonetheless, these strong dichotomies
are dissatisfying to many developmentalists. This is likely due to the fact
that everyone believes that there is some innate knowledge, they just
might disagree over how structured or advanced it is, and everyone
believes there is some role for learning but, again, they might disagree over
how central the learning mechanisms are to the story of development.

Recently, a theoretical framework that offers a middle ground
between nativism and empiricism, termed rational constructivism, has
been introduced (Xu, 2007; Xu, Dewar, & Perfors, 2009; Xu & Griffiths,
2011). One central focus of rational constructivism is to explore the role of
domain-general inductive inference mechanisms in development. Induc-
tive inference mechanisms may provide a more satisfying account of
explaining how it is that children make rapid inferences from sparse data.
They do not require that the learner bring a great deal of initial conceptual
knowledge to any given task, but they can account for the rapid and
accurate inferences that young children make with limited and imperfect
data. In fact, it has been suggested that some of the early constraints that
young learners use to guide their inferences in domains such as word
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learning may be acquired through these learning mechanisms (Dewar &
Xu, 2010; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Kemp,
Perfors, & Tenenbaum, 2007; Smith, Jones, Landau, Gershkoff-Stowe, &
Samuelson, 2002). The inductive inference mechanisms central to rational
constructivism are Bayesian in nature, allowing a role for both prior
knowledge and input data in driving conceptual growth and thus bridging
the nativist–empiricist divide to provide an explanation for learning and
development in early childhood. Inductive inference mechanisms based
on Bayesian principles assume that the learner makes educated guesses
about the probabilities of a set of hypotheses, and these degrees of belief
can be updated when additional pieces of evidence are acquired. They
allow the learner to make inductive leaps based on minimal amounts of
stochastic dataddata similar in kind to the type of input that humans
receive in the real world.

The purpose of this chapter is to explore how inductive inference gets
off the ground in early infancy. If Bayesian inference is a good candidate
to drive learning in early childhood and throughout the lifespan, an
important first step is to identify the computational machinery that might
allow infants and young children to make inferences of this nature.
Although young children appear to make inductive inferences in ways that
are consistent with Bayesian inference, the question of when these
mechanisms come online and whether or not they are available in early
infancy remain largely unknown. One central prerequisite to computing
Bayesian inference, or approximations to Bayesian inference, is the ability
to reason about probabilities and probabilistic data. In this chapter, we
review research that explores the developmental origins of probabilistic
inference in human infants. Do untutored infants have intuitions about
probability that could serve as a prerequisite to later inductive inference?
Can they make inductive inferences based on incomplete data to make
generalizations from samples to populations and vice versa? These ques-
tions become even more interesting to consider when we think about the
wealth of research suggesting that adults often struggle to make inferences
in contexts that involve these basic probability computations (Tversky &
Kahneman, 1974, 1981). In this chapter, we review evidence mainly from
our laboratory suggesting that infants are capable of making probability
computations in a variety of contexts (see also Cesana-Arlotti, Teglas, &
Bonatti, 2012). We then discuss the implications of these findings to
traditional views of development and the more mature states of cognitive
reasoning in children and adults.
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2. EMPIRICAL EVIDENCE FOR PROBABILISTIC
INFERENCE IN INFANCY

2.1. Rudimentary Probabilistic Inferences
We begin by reviewing the available evidence suggesting that infants may be
“intuitive statisticians.” There exists a long history of investigating proba-
bilistic reasoning in young children, beginning with Piaget and extending to
contemporary researchers in both psychology and education. In Piaget’s
original experiments, he asked whether or not young children had intuitions
about quantitative proportions and randomization by assessing their ability
to make an inference about the likely contents of a sample, based on the
composition of a population (Piaget & Inhelder, 1975). He showed 5- to
12-year-old children various distributions of two colors of tokens being
placed in an opaque bag. He then simply asked the children which color
they would be “most likely” to draw if they reached into the bag and pulled
out just one token. In this task, children below the age of 7 did not
systematically rely on the proportions of colored tokens to make their
guesses and they did not appear to understand the concept of randomness.
Children instead provided responses based on inappropriate elements such as
idiosyncratic properties of the two colors; for example, “I’ll get red because I
like red.” or an incorrect intuition of randomness, for example, “I’ll get red
because red went first.”

Piaget’s conclusions have not gone unchallenged over the past 60 years.
Yost, Siegel, and Andrews revisited Piaget’s question in their 1962 paper and
found that 5-year-old children can succeed at analogous problems when the
task is made more appropriate for a young age group. In particular, they
found that children will provide correct answers at higher than chance levels
when the verbal demands of the task are reduced. Convergent findings have
been reported in subsequent experiments examining simple relationships
between samples and populations with 4- and 5-year-old children (Acre-
dolo, O’Connor, Banks, & Horobin, 1989; Goldberg, 1966; Reyna &
Brainerd, 1994). In addition to the evidence suggesting that preschool-aged
children can make rudimentary probabilistic computations, more recent
experiments have revealed that slightly older children, beginning at around
ages 6 and 7, can make very sophisticated inferences about the likely
outcomes of uncertain events based on probability in a variety of contexts.
For example, children make accurate probabilistic inferences in tasks
involving complex judgments of expected values (Schlottmann & Anderson,
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1994) and in tasks that require judgments based on the integration of
prior probabilities and additional information (Girotto & Gonzalez, 2008;
Gonzalez & Girotto, 2011).

Recently studies have begun investigating probabilistic inference in
infancy. Three experiments, all employing the violation of expectation
(VOE) looking-time paradigm, have investigated rudimentary probabilistic
inference in infants’ during the first year of life. The VOE looking-time
paradigm capitalizes on the fact that infants look longer at events that they
find unusual or surprisingdevents that violate their expectations. In a typical
VOE experiment using visual displays, infants begin by looking at displays to
become familiarized or habituated to the stimuli that will be used in the
experimental session. Infants are then shown test trials, during which events
that are more or less probable are shown, and infants’ looking times are
recorded. The basic intuition is that infants should look longer at an
outcome event that is less probable than one that is more probable.

Teglas, Gonzalez, Girroto, and Bonatti (2007) used the VOE looking-
time paradigm to ask whether 12-month-old infants could engage in
probabilistic inference. In particular, they were interested in whether or not
infants can make inferences about single-event probability, which in their
paradigm requires the individual to observe a population of objects and
reason about the likely outcome when just a single, random object is
removed. Infants were familiarized to a lottery machine device displayed on
a computer screen, containing four objects, in a 3 yellow to 1 blue ratio. On
test trials, the machine was briefly occluded and infants were shown two
alternating outcomes: either one of the yellow objects appeared to have
exited from a chute in the bottom of the machine or the blue object exited
from the chute. As a group, infants looked longer at the events in which the
blue object exited the chute, suggesting that they found this outcome less
probable. This suggests that 12-month-old infants realize that when a single
object is randomly drawn from a 3:1 distribution, the object drawn is more
likely to be of the majority kind.

Other studies have explored probabilistic inference in infancy by
examining whether or not infants can reason about the relationship between
large populations of objects and multiobject samples. Xu and Garcia (2008)
tested 8-month-old infants’ abilities to make generalizations from small
samples to larger populations using a VOE looking-time experiment with
a live experimenter and live objects. The experiment began with infants
viewing familiarization trials, during which an experimenter placed a single,
covered box on the stage, shook it back and forth, and removed the cover to
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show the infants the contents of the boxda large collection of Ping-Pong
balls. On alternating trials, the population of balls in the box was either in
a 9:1 red to white balls’ ratio or a 9:1 white to red balls’ ratio, but these large
boxes appeared identical when the covers were closed. This familiarization
was followed by test trials, during which the experimenter again took out
a large covered box and placed it on the stage, shook it back and forth a
couple of times, closed her eyes, reached into the box, and removed
a sample. After removing the sample, the experimenter removed the cover
on the box to reveal the population, always consisting of mostly red balls for
one group of infants or mostly white balls for the other group. On alter-
nating trials, the sample removed from the box consisted of either four red
and one white Ping-Pong balls or four white and one red Ping-Pong balls
(see Fig. 2.1). Infants looked longer at the 4:1 white to red ball samples if

Figure 2.1 Schematic representation of test trials in the Ping-Pong ball experiments.
Adapted from Xu and Garcia (2008). For color version of this figure, the reader is referred
to the online version of this book.
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they were in the group that was shown the mostly red box and they looked
longer at the 4:1 red to white ball samples if they were in the group that was
shown the mostly white box. Thus, infants in this experiment were able to
assess what a population is likely to consist of, based on a small random
sample.

In a second experiment, Xu and Garcia (2008) demonstrated that infants
could also make this inference in the reverse direction. The experimenter
began by showing infants the open box filled with mostly red Ping-Pong
balls for one group and mostly white Ping-Pong balls for the other group
and then closed the box. She then removed the 4:1 red to white or white to
red samples from the box on alternating trials. Infants in this experiment
looked longer at the less probable 4:1 white to red ball samples being drawn
from the mostly red population and the 4:1 red to white ball samples from
the mostly white population. Therefore, in this case, similarly to the lottery
machine experiment but with large numbers of objects, when infants were
shown the population from which a sample was to be drawn, they expected
that sample should be representative of the population.

As with most looking-time experiments, alternatives to the interpre-
tation that infants produce this looking pattern because they are making
probabilistic inferences are possible. One might wonder whether infants are
making probability computations in these experiments or instead reacting
to the perceptual differences between the samples and populations. It is
possible that infants looked longer at the four white and one red ball
samples being drawn from the mostly red box because the sample and box
are more different in appearance, and potentially more interesting to look
at, than in the outcome displaying the four red and one white sample
drawn from the mostly red box. To control for this possibility, a second set
of experiments were run with additional groups of 8-month-old infants
(Xu & Garcia, 2008). In these experiments, infants saw the exact same
familiarization trials but on test trials, the experimenter eliminated the
sampling relationship between the large box and the small sample
container. Infants saw the closed box being placed on the stage and then
the experimenter removed a sample, not from the box but from her
pocket, placed it in the container, and then removed the cover on the box.
Thus, infants saw the exact same outcomes during the timed portion of the
test trials as in the original experiments, but the sample did not originate
from the large box. In these experiments, 8-month-old infants did not look
reliably longer to either outcome, suggesting that infants in the original
experiments were not reacting to the perceptual differences in the scene
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but instead to what is probable and improbable given the distribution of
balls in the population.

The two sets of experiments reviewed here suggest that 12-month-old
infants can make single-event probabilistic inferences and that 8-month-old
infants can make inferences from samples to populations and vice versa.

What about younger infants? It seems plausible that younger infants
could compute probabilities, given evidence revealing sensitivity to statistical
input from newborns to 8-month-olds in domains such as phoneme
discrimination, word segmentation, and visual pattern learning (e.g. Aslin,
Saffran, & Newport, 1998; Bulf, Johnson, & Valenza, 2011; Kirkham,
Slemmer, & Johnson, 2002; Maye, Werker, & Gerken, 2002; Saffran, Aslin,
& Newport, 1996). Additionally, Sobel and Kirkham (2006, 2007) have
found that 8-month-old, but not 5-month-old, infants can reason about
conditional probabilities with visual displays. Thus, it is unclear as to how
infants in the first 6 months of life would fare in a probabilistic inference
experiment similar to the ones reported in this review.

To test whether or not infants younger than 8 months can make
generalizations from samples to populations, Denison, Reed, and Xu (2012)
conducted an experiment designed to test 4.5- and 6-month-old infants’
probability intuitions. The experimental procedure was structured to keep
processing demands minimal but to also control for a potential confound in
the lottery machine and Ping-Pong ball experiments described above.
Denison et al. used displays that always consisted of two complementary
population boxes with 4:1 and 1:4 ratios of pink and yellow balls in each
box. Thus, in this experiment, unlike in Xu and Garcia (2008) and Teglas
et al. (2007), the amount of each color (e.g. pink vs. yellow) present in the
population containers was always equivalent.

Infants were first familiarized to a scene with two large boxes placed side-
by-side on a stage with, for example, the box on the right containing a 4:1
pink to yellow balls’ ratio and the box on the left containing a 4:1 yellow to
pink balls’ ratio. On test trials, the two boxes were again placed on the stage,
with covers, and the experimenter shook each box, reached into the box on
the right to remove a sample of balls and placed them in a container in
between the two boxes. She then mimicked this sampling action with the
box on the left to draw infants’ attention to each box equally. Finally, the
experimenter revealed the contents of the boxes simultaneously and
the infants’ looking times were recorded. On alternating trials, the sample
removed was either four pink and one yellow balls (i.e. the more probable
sample) or four yellow and one pink balls (i.e. the less probable sample) from
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the mostly pink box. In this experiment, 6-month-old infants looked reli-
ably longer at the less probable 4:1 yellow to pink ball samples being drawn
from a mostly pink box, but 4.5-month-olds looked approximately equally
at both samples. Thus, it appears that 6-month-old infants have intuitions
about the relationship between samples and populations, but this compe-
tence was not found in 4.5-month-olds.

Although the presence of the two population boxes equates the amount
of pinkness and yellowness in the scene, it is still possible that infants only
paid attention to the box from which the sample had been drawn. Frame-
by-frame coding analyses of the test trials provided support against this
alternative interpretation of the 6-month-olds’ looking behavior and also
insights into the possible reason why 4.5-month-olds failed. The coder
broke down the infants’ scanning behavior to assess the duration of time that
each infant looked at three different portions of the stage: 1) The box on the
right (i.e. the box from which the sample was drawn), 2) the box on the left
(i.e. the box that the experimenter mimicked the sampling with), and 3) the
sample itself. This coding revealed that 6-month-old infants spent approx-
imately equal amounts of time scanning the two boxes and the sample
during the test trials. Thus, 6-month-olds attended to the entire scene.
These analyses suggest that it was unlikely that infants simply ignored the
second, complementary population box and then reacted to the perceptual
features of each sample compared to the sampled box to produce their
differential looking times. The 4.5-month-old infants, on the other hand,
produced a somewhat surprising pattern of scanning behavior. While the
population contents were still hidden and the experimenter was performing
the sampling and the mimicked sampling, the 4.5-month-olds attended
significantly more to the unsampled population box than to the box from
which the sample was drawn. In order to make accurate probabilistic
inferences, infants must track where samples are drawn from, and this may be
an ability that 4.5-month-old infants lack. Perhaps the 6-month-old infants
were able to scan the scene and extract the relevant information for making
generalizations whereas the 4.5-month-olds were not yet able to hone in on
the most pertinent components of a scene to make an accurate probabilistic
inference. Infants at this age may not realize that it is necessary to attend to
the source from which a sample is drawn in order to make accurate
generalizations. Future experiments are needed to explore this possibility
more directly. If these inferential abilities only come online at around
6 months of age, they may not be responsible for the acquisition of the
domain knowledge we see in very young infants (e.g. Baillargeon, 2008).
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However, the jury is still out on this since it is not clear if the current
methodology is the best way to uncover such competence in infants
younger than 6 months.

In sum, these new findings provide strong support for rudimentary
probabilistic inference in infants as young as 6 months of age. These
experiments challenge the view that it is not until at least 4 years of age that
children are capable of making such inferences. These initial findings raise
many interesting questions about early inductive learning abilities. In the
next section, we consider two of them in some detail: how sophisticated is
this ability in infants? In particular, do infants understand the difference
between random sampling and nonrandom sampling, a critical component
of probabilistic inference? Can infants integrate domain knowledge in their
probabilistic computations, a critical question in understanding the nature of
these learning mechanisms?

2.2. Integrating Domain-Specific Constraints
on the Sampling Process
Probabilistic inferences are often only valid if we assume random sampling.
In the experiments presented in the previous section, it is assumed that
infants were reasoning based on the principle of random sampling.
However, the inferences that infants make should be quite different if the
experimenter does not remove a sample at random but instead removes
a sample to illustrate a goal or preference for particular objects or to teach the
learner something about a subset of the objects. In cases where the agent is
not drawing out objects at random, the sample should likely reflect the
agent’s goals and not necessarily the composition of the distribution. Are
infants sensitive to some of the cues that indicate either random or
nonrandom sampling?

Additionally, recall that the motivation for examining probabilistic
inference in infancy was to reveal whether or not probabilistic inference is
a viable domain-general inductive inference mechanism that can be used to
acquire domain knowledge. If computations that involve probability are
meant to be part of a domain-general learning mechanism that can support
the accumulation of domain knowledge, these computations should be
integrated with domain knowledge early on. Thus, the following experi-
ments examine whether or not infants can integrate domain knowledge
with probabilistic inference early in infancy. When infants make probabi-
listic computations, do they do so in a purely bottom-up, data-driven way,
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making automatic inferences about populations based on samples and vice
versa? Or, is this a top-down process, in which human learners can integrate
their substantive domain knowledge in order to influence the output of their
probabilistic computations?

2.2.1. Integrating Psychological Constraints with Probabilistic
Inference
Xu and Denison (2009) designed a study to address whether or not preverbal
infants make one of the key assumptions necessary for correct probabilistic
inferencedrandom samplingdand if this assumption can be overturned in
light of relevant evidence; 11-month-old infants were tested in an experi-
ment similar in design to Xu and Garcia (2008). Infants were assigned to one
of three conditions in which two variables pertaining to an agent drawing
samples from a box were manipulated. The first variable manipulated was
whether or not an experimenter demonstrated a goal for obtaining particular
colored Ping-Pong balls. Thus, infants in a random sampling condition saw
that the experimenter did not have a specific goal for obtaining a particular
color of balls but infants in nonrandom sampling and blindfolding conditions saw
that the experimenter had a goal for collecting, for example, white Ping-
Pong balls rather than red balls. The second variable that was manipulated
was whether or not the experimenter had visual access to the population
from which she was sampling during test trials. In the random sampling
condition, the experimenter turned her head and closed her eyes during
sampling; in the nonrandom sampling condition, the experimenter looked
into the box during sampling; and in the blindfolding condition, the
experimenter was blindfolded during sampling. The experimenter always
drew out alternating samples of either five white or five red balls from the
large covered box that was revealed to contain a large population of mostly
red balls.

Infants in the random sampling condition provided a looking pattern that
replicated Xu and Garcia (2008); they looked longer when the five white
ball samples was drawn from the mostly red box as this sample was less
probable than the five red ball samples. Infants in the nonrandom sampling
condition looked longer at the five red ball samples as this sample was
incongruent with the experimenter’s goal. Thus, the infants in the
nonrandom sampling condition made inferences based on the experi-
menter’s goals, even though this goal conflicted with the base rate of balls in
the population box. Finally, infants in the blindfolding condition looked
longer at the five white ball samples. These infants apparently realized that,
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although the experimenter expressed a goal for obtaining white balls, she
could not act on this goal because her visual access was blocked, and thus, she
was forced to draw a random sample. Overall, infants in this experiment
flexibly took into account sampling conditions and integrated substantive
domain knowledge about agents into probabilistic inference: If a person has
a specific goal and has the means (i.e. visual access) to act on that goal, infants
expect sampling behavior to reflect that agent’s goals. On the other hand, if
a person has a goal but lacks control over their sampling choices due to
blocked visual access, they assume that the sample should reflect the
distribution.

Adding to the literature on infants’ abilities to consider the sampling
process in probabilistic inference, Gweon, Tenenbaum, and Schulz (2010)
examined whether or not 15-month-old infants can use probabilistic data
to make accurate object property generalizations. In their study, infants in
one condition saw a box containing a large population of rubber balls in
a 4:1 blue to yellow ratio and infants in a second condition saw a pop-
ulation with the opposite ratio. For all infants, the experimenter removed
three blue balls from the box and demonstrated that they had the
property of squeaking. The question is, does the infant think that the
yellow balls should also squeak? The experimenter gave a yellow ball to
the infant and then measured how persistent the infant was in trying to
make the yellow ball squeak. They found that infants in the mostly blue
population condition were more likely to think that the yellow balls should
squeak than infants in the mostly yellow population condition. This is
because infants correctly inferred that the sample was more likely to have
been intentionally removed to reveal a property specific to blue balls in
the case where the blue balls were in the minority, but balls might have
been drawn randomly in the case where blue balls were in the majority.
That is, in the former case, the experimenter appeared to be sampling to
demonstrate that the blue balls had a special property, but in the latter
case, she was likely sampling from the entire contents of the box and so
she was not intentionally demonstrating that only the blue balls had the
special property.

The results of these two studies suggest that 11- and 15-month-old
infants use both their knowledge about agents and their probabilistic
inference capabilities in probabilistic reasoning and property induction tasks.
Infants were able to make generalizations based either on the probability of
obtaining particular samples based on the contents of a population or on
psychological constraints placed on the person removing the samples.
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2.2.2. Integrating Physical Constraints in Probabilistic Inference
In addition to providing evidence for sensitivity to sampling conditions,
infants’ performance in the previous experiments highlights a sophisticated
ability to integrate domain knowledge regarding agents in probabilistic
inference. Parallel resultsdin fact, even more complex and nuanceddhave
been found in the domain of naive physics in four studies.

The following experiments shed light on two important questions about
infants’ probabilistic inference abilities: First, they provide evidence for
integration between probabilistic reasoning and substantive domain
knowledge in a second domain. The development of naive physics in
infancy has been heavily studied over the past 30 years. Research suggests
that infants possess a wealth of knowledge about the typical behavior of
physical objects: They understand basic principles, realizing that objects
behave in accord with the core principle of persistencedwhich includes
concepts such as solidity, continuity, cohesion, and boundedness (Baillargeon
& Carey, in press; Spelke, Breinlinger, Macomber, & Jacobson, 1992; Spelke,
Phillips, & Woodward, 1995). Additionally, as infants’ knowledge of naive
physics progresses within the second half of the first year, they apply these
core principles in increasingly sophisticated ways when reasoning about
complex physical events such as occlusion, covering, support, and contain-
ment (see Baillargeon, 2008; Baillargeon & Carey, in press, for reviews).
Thus, the domain of naive physics appears a good place to examine more
complex abilities that infants might have for integrating knowledge in
probabilistic inference.

Second, the following experiments on probabilistic inference and naive
physics help to elucidate the strategy that infants might use to make prob-
abilistic inferences. One possibility, consistent with all of the findings
demonstrated thus far, is that infants make true, analytically valid probability
computations or estimations when faced with random sampling events in
these tasks. A second possibility is that infants might employ a reasoning
heuristic to make these inferences, such as the representativeness heuristic.
The representativeness heuristic, in the context of these infant experiments
would simply translate to: “if a random sampling event is encountered,
I expect the distribution of the sample to reflect the distribution of the
population in terms of perceptual features.” Thus, infants might either be
making quite sophisticated probabilistic inferences or they might be using
a mental shortcut to quickly assess the likely contents of a population based
on a sample (or vice versa). As with all heuristics, if infants are using the
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representativeness heuristic to make judgments in these tasks, they should
make some predictable errors in cases where this heuristic breaks down and
does not provide a correct probabilistic estimation. The following experi-
ments begin to tease apart these two possibilities.

The first piece of evidence to suggest that infants can integrate their
knowledge regarding the behavior of physical objects with probabilistic
inference comes from the lottery machine experiments conducted by Teglas
et al. (2007), reviewed above. Recall that infants used distributional infor-
mation to infer that one of the more numerous yellow objects was more
likely to exit the machine on a single draw than the blue object. Infants in
a second experiment were shown that a physical barrier existed inside the
machine and that the three yellow objects were placed above the barrier and
the single blue object was placed below. This second group of infants used
their knowledge of naive physics, rather than distributional information to
reason that the blue object was now the more probable object to exit the
machine as objects cannot pass through solid barriers. These results suggest
that 12-month-old infants can appropriately use either probability infor-
mation or their knowledge of naive physics when making an inference
about the likely outcome of an event.

In Teglas et al. (2007) and Xu and Denison (2009), infants were able to
assess when to use ratio information and when to use domain-specific
knowledge regarding naive physics or naive psychology to make an infer-
ence. These abilities are impressive as infants used very subtle cuesdthe
presence or absence of a physical barrier and an agent’s perceptual access to
a scenedto infer whether or not they should compute probabilities or
instead make a judgment using physical or psychological knowledge,
respectively. However, these experiments did not require infants to fully
integrate domain-specific knowledge in statistical inferencedthat is, infants
were required to use one knowledge source or the other but not both
simultaneously.

Using a paradigm similar to Xu and Garcia (2008) and Xu and Denison
(2009), Denison and Xu (2010a) tested whether or not 11-month-old
infants can integrate their knowledge of cohesiondthe fact that objects do
not spontaneously merge together or break apartdto exclude a portion of
objects in a population from their probability computations. This experi-
ment had two conditions, a movable condition and a nonmovable condition. In
the nonmovable condition, infants were shown through a variety of
demonstration trials that green balls with Velcro strips have the property of
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getting stuck to the insides of boxes and containers. Following demon-
strations, on test trials, infants watched an experimenter sample four yellow
and one red balls or four red and one yellow balls, on alternating trials, from
a box containing a 5:4:1 ratio of green to red to yellow balls. Infants looked
longer at the 4:1 yellow to red ball samples than the 4:1 red to yellow ball
samples. These infants appeared to apply the constraint that green balls stick
to boxes, rendering them unavailable for sampling. They then presumably
computed probabilities over the remaining sets of balls, reasoning that
obtaining the 4:1 yellow to red ball samples from the 5:4:1 green to red to
yellow population was less probable than the 4:1 red to yellow ball samples.
Furthermore, another group of 11-month-old infants were tested in
a movable condition, during which they were not shown that green balls
with Velcro were stuck inside boxes. These infants looked for the same (and
relatively long) amounts of time at the two samples on test trials. This finding
suggests that when two samples are both highly unlikely to be drawn
randomly from a population, infants are not capable of discriminating which
is less likely as both appear to violate their expectations. This rules out the
potential alternative interpretation of the looking pattern of infants in the
nonmovable condition, suggesting that they did not ignore the physical
constraint and simply compute which of two extremely low probability
events was more probable, rather they applied the constraint and computed
over remaining sets of balls.

Teglas et al. (2011) recently tested an even more challenging ability for
integration in 12-month-old infants, using the lottery machine paradigm to
assess whether infants could integrate spatiotemporal information in prob-
abilistic inference. To make an inference about which color object was most
likely to exit the chute in this experiment, infants were required to integrate
the ratio of three yellow to one blue objects with two pieces of spatio-
temporal information, which were systematically varied across infants: the
duration of occlusion before an object exited the chute (i.e. the objects were
occluded for 0, 1, or 2 s) and the physical arrangement of the objects in the
machine (i.e. the relative proximity of the yellow objects vs. the blue object
to the chute at time of occlusion). Remarkably, infants’ looking times in this
experiment were of a graded nature, suggesting that they correctly inte-
grated spatiotemporal information with the number of objects of each type.
Essentially, as occlusion time was varied from brief to relatively long, infants
placed less importance on proximity to the chute and more importance on
the ratio of blue to yellow objects and vice versa. This experiment suggests
that infants can put together information about the interaction of the
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physical arrangement of objects, occlusion time, and the ratio of objects
when making a prediction about a future event. This finding adds to the
evidence in favor of infants’ ability to combine probability information with
substantive domain knowledge.

Findings from Denison and Xu (2010a) and Teglas et al. (2011) suggest
that infants can integrate knowledge of naive physics in probabilistic infer-
ence. However, neither of these experiments definitively demonstrates that
infants can use domain knowledge to adjust the base rate of populations
when making probabilistic inferences. Evidence demonstrating that infants
use physical knowledge to alter the base rates of a population to make
probabilistic inferences would provide strong support for the claim that
infants’ probability computations and domain-specific knowledge are truly
integrated. In addition, requiring infants to fully integrate their knowledge
of naive physics may allow for an empirical test of whether infants make
probability computations in these tasks or instead use a version of the
representativeness heuristic. To be clear about the distinction between these
alternatives, the representativeness heuristic states that, when one attempts to
infer whether an object, person, or event belongs to or is an exemplar of
a particular category, that object should have similar surface features to that
category in general (Tversky & Kahneman, 1974). It is straightforward to see
how this heuristic could apply to the infant probabilistic inference experi-
ments reviewed here; infants could simply use the representativeness
heuristic to judge whether a sample is perceptually similar to a population to
make a quick inference about the likelihood of a particular outcome. As in
the case of adult reasoning, this heuristic often serves as a useful shortcut but
it does not always result in correct inferences as its use often results in biased
judgments.

Although the results from Denison and Xu (2010a) can be interpreted as
an argument against the use of this heuristic, an alternative interpretation of
infant performance that includes representativeness is also plausible. Adults
can select attention to up to three sets of elements within a large array (e.g.
Alvarez & Cavanagh, 2004; Halberda, Sires, & Feigenson, 2006), and infants
in this experiment may have selected attention to two of the sets in the
population boxdthe red and yellow ballsdfiltering out the green balls and
then simply compared the perceptual features of the population box to the
samples to make judgments.

In a recent series of experiments, Denison, Trikutam, and Xu (2012)
used a design similar to Denison and Xu (2010a) to directly address the
question of whether infants rely on probability computations or
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representativeness in these tasks. The manipulation required infants to
rapidly learn either a probabilistic physical constraint in one experiment or
a deterministic constraint in a second experiment and apply it in probabilistic
inference. Infants in these experiments saw two sets of Ping-Pong ballsdred
balls with no distinctive markings and green balls with Velcro strips.
Although all the green balls were identical in appearance, the data given to
the infants on demonstration trials were varied across the two experiments
to illustrate that the physical property of movability applied probabilistically
to the green balls in the first experiment (c. 80% of the balls were immovable
from boxes) and deterministically to the set in the second experiment (all
green balls were immovable). In both experiments, the test trials consisted of
a large closed box being placed on stage and an experimenter removing, on
alternating trials, samples consisting of four green and one red balls or four
red and one green balls. The population revealed in the box contained a 3:1
ratio of green to red balls.

In the Probabilistic Constraint experiment, if infants realize that the
majority of green balls get stuck in boxes, and integrate this with the
distribution of balls in the box, they should think the 4:1 green to red ball
samples unlikely and unexpected, looking longer at it regardless of the fact
that this sample looks nearly identical to the population. This is because most
of the green balls but not all are unavailable for sampling. If infants cannot
identify and integrate the constraint, or if they apply the representativeness
heuristic when attending to the final outcomes, they should find the 4:1 red
to green ball samples unexpected and look longer at it as this would be
judged to be unlikely in both these cases. In the Deterministic Constraint
experiment, infants should reason that both samples are unlikely, given the
demonstration trials they observed (see Fig. 2.2 for a representation of the
predictions).

Infants in the Probabilistic Constraint experiment looked longer at the
4:1 green to red ball samples than the 4:1 red to green ball samples. This
suggests that infants were able to integrate a stochastic physical constraint
rule in probabilistic inference, using the physical constraint placed on
a subset of green balls to adjust the base rate of balls available for sampling in
their probabilistic computations. Thus, infants in this experiment appeared
to rely on true probability computations to make judgments, not falling pray
to the representativeness heuristic to make quick, but in this case incorrect,
judgments. Infants in the Deterministic Constraint experiment looked about
equally at the two outcomes, suggesting that they found both samples
unexpected, given that no green balls were available for sampling.
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Collectively, the findings from these four studies suggest a surprisingly
complex ability to make probabilistic inferences that require integration of
naive physics by the end of the first year. Infants are capable of discerning
whether they should rely on distributional information or physical
constraints when making inferences about the likely outcome of future
events (Teglas et al., 2007). They can also integrate predictions from
distributional information and predictions from spatiotemporal information
when making these inferences (Teglas et al., 2011). Finally, infants appear to
rely on accurate probabilistic computations and not representativeness when
constraints imposed by naive physics are used to alter the base rate of
a probability computation (Denison & Xu, 2010a; Denison et al., 2012).

2.2.3. Summary of Infants’ Abilities to Integrate Constraints
The results of the experiments reported in this section suggest that infants
can integrate probabilistic inference with substantive domain knowledge
when making judgments about the likely outcomes of future events. Infants
flexibly use either their knowledge of agents and physical object properties
or distributional information in the populations and samples, or both
simultaneously to make inferences, suggesting that early probabilistic

Figure 2.2 Predictions for the test trials in the Probabilistic and Deterministic
Constraint experiments. From Denison, Trikutum, and Xu (2012).
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computations are integrated with substantive domain knowledge. Together,
these findings demonstrate that probability computations in infancy do not
unfold automatically. When faced with a situation in which infants must
make generalizations from samples to populations, they make these
computations by considering potential constraints that might be placed on
the generative process. This integration with domain knowledge suggests
that probabilistic inference is a good candidate for use in a domain-general
inductive inference mechanism that could help build early emerging domain
knowledge.

While infants learn a great deal through observing other people’s
actions, they also use their own actions as a means for learning, through
activities such as object manipulation, play, and search. In the following
section, we discuss recent work that explores whether or not infants can
use their probabilistic computations to guide prediction and action in
a choice task.

2.3. Infants Use Probability Calculations to Make Predictions
That Guide Their Actions
So far, almost all the experiments we have reviewed employ the VOE
method with infants. One ambiguity in using looking-time methods is that
it is difficult to assess whether or not infants can make predictions about the
likely outcome of events or if they can only judge the events post hoc. A
second ambiguity is that the interpretation of looking-time data can be
controversial, as lower level interpretations of the findings are often plau-
sible, as opposed to rich interpretations regarding conceptual knowledge.
Because of these ambiguities and because looking time is by nature an
indirect measure of conceptual knowledge (Aslin, 2007), the following
experiments serve to provide converging evidence of probabilistic inference
in infancy using a novel methodology. Furthermore, the experiments
detailed below will also tease apart one final important confound in all the
previously discussed experiments. In all cases examined thus far, infants
could rely on a simple heuristic that compares absolute quantities: if the
lottery machine has three blue objects and one yellow object, it is more
probable to get a blue one on a single random draw because three is more
than one (Teglas et al., 2007, 2011); if one box has 40 green and 10 red balls
and the other has 10 green and 40 red balls, then it is more probable to get
a green ball from the first box than the second on a random draw because 40
is more than 10. A true understanding of probability is based on proportions
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since probability is an intensive quantity (Bryant & Nunes, 2012). For
example, if one gumball machine contains 12 pink and many candies of
other colors and the other 12 pink and a few candies of other colors, even
though the number of pink gumballs is the same in the two machines, it is
the proportion of pink ones in each jar that determines which one is more
likely to yield a pink onedthe one you wantdwhen you insert a quarter
into a machine. The experiments that follow present infants with versions of
this question, providing the first unequivocal test of probabilistic reasoning
based on proportion in infancy.

The general procedure used in the following experiments was modeled
after a methodology created by Feigenson, Carey, and Hauser (2002).
Infants begin by completing a preference trial, during which the experi-
menter shows the infant two objectsdone attractive pink lollipop, deco-
rated with silver sparkles and stars and one unadorned black lollipop. These
objects are placed about a meter apart on the floor and the infant is allowed
to crawl or walk toward the lollipop of their choice and this is considered
their preference. Most infants (but not all) prefer the pink lollipop during
this trial. Next infants complete a test trial. The experimenter brings out two
large transparent jars each containing different distributions of pink and black
lollipops. The ratios of pink:black lollipops differ depending on the exper-
iment but, in general, one jar always has a more favorable ratio of the infants’
preferred to nonpreferred (or in one experiment, neutral) lollipops. After
showing infants these two populations, the experimenter places covers over
the populations and then removes, one at a time, a single lollipop from each
population, doing so in such a way that the infant can see that a single object
is being drawn, indicated by the single lollipop stick, but the color of that
object is always occluded by the experimenter’s hand. Each of these lollipops
is then placed in separate cups with covers and infants are permitted to crawl
or walk toward and search in a cup of their choice. If infants understand that
the population with a more favorable ratio of preferred to nonpreferred
objects is most likely to yield a preferred object on a single draw, they should
search in the location from which a sample from this jar is placed (see
Fig. 2.3).

In the first experiment, 10- to 12-month-old infants were tested in
a procedure with complementary 3:1 populations of pink and black lolli-
pops, with the number of preferred lollipops for each individual infant
controlled across populations. Infants were first given a preference trial
between a black and a pink lollipop. Then they completed a test trial with
populations that were based on their individual preferences: If the infant
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preferred a pink lollipop, he/she saw one population containing a 12:4 ratio
of pink to black lollipops and a second population containing a 12:36 ratio of
pink to black lollipops; if the infant preferred a black lollipop, he/she saw
populations with the opposite ratios. Thus, the number of preferred or target
lollipops was equated across populations and the number of nonpreferred
lollipops was varied to alter the proportions. This experiment requires that
infants reason about the difference in proportion of target objects between
the two competing populations and not just the absolute quantity of target
objects compared across each population. Thus, if infants search based on
comparisons of absolute quantity of target objects, they should perform at
chance in this experiment. If they instead make their choices based on the
comparison of the two proportions across populations, they should search in

Figure 2.3 Schematic representation of all lollipop experiments. Adapted from Denison
and Xu (2010b). For color version of this figure, the reader is referred to the online
version of this book.
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the location containing a sample from the 12:4 preferred to nonpreferred
lollipops. Infants in this experiment searched in the 12:4 location more often
than would be expected by chance.

When absolute quantity of target objects is equated across populations,
infants make a judgment based on proportions, suggesting that when they
are prevented from making an inference based on quantity, they correctly
use proportional information to make a judgment. However, this does not
inform us as to how infants would make judgments if absolute quantity and
proportional information were in conflict. In a second experiment, infants
were shown one population with a ratio of 16:4 preferred to nonpreferred
lollipops and a second population with a ratio of 24:96 preferred to non-
preferred lollipops. If infants rely on a quantity heuristic in this experiment,
they should search in the location with a sample from the 24:96 population
as 24 target items is greater than 16 target items. If they instead correctly
make judgments based on comparisons of proportions of preferred to
nonpreferred lollipops, they should search in the location with a sample
from the 16:4 population as this is more likely to yield a preferred object.
Infants in this experiment used comparisons of proportional information and
not absolute quantity as they searched in the 16:4 location at higher than
chance levels. Thus, even when infants could use a quantity heuristic, they
instead use proportional information to make a more accurate probabilistic
inference.

Although these two experiments suggest that infants are unlikely to be
using a quantity heuristic to compare absolute numbers of target objects to
make probabilistic inferences, one additional confound remains. It is possible
that infants use a different quantity heuristic to guide their search. Infants
could use comparisons of absolute quantities of nonpreferred objects to
make inferences by avoiding nonpreferred items in all the experiments
discussed so far. That is, in the previous two experiments, the cup with the
higher probability of containing a preferred lollipop always coincided with
a population containing a lower absolute number of nonpreferred lollipops.
Thus, a third experiment was designed such that infants could not use
comparisons of absolute quantity of either preferred or nonpreferred lolli-
pops to make judgments. This experiment involved two additional exper-
imental phases, a familiarization phase at the beginning of the experiment
and a posttest at the conclusion. First, infants were briefly familiarized to
three different lollipops: pink, green, and black. During the preference
phase, infants again chose between a decorated pink lollipop and a plain
black lollipop. On test trials, the infants saw populations with containers of
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pink, black, and green lollipops, with the pink and black being either the
preferred or nonpreferred object (according to the individual infant’s pref-
erence trial) and the green lollipops serving as neutral objects. The distri-
butions consisted of a ratio of 8:12:2 preferred to nonpreferred to neutral
lollipops versus a ratio of 8:8:64 preferred to nonpreferred to neutral lolli-
pops. In this case, if infants are motivated by increasing their likelihood of
obtaining a preferred lollipop, and they achieve this based on comparisons of
proportions, they should choose the one lollipop drawn from the 8:12:2
population as this population is more likely to yield a preferred lollipop than
the 8:8:64 population (8/22 vs. 8/80). If infants are instead motivated by
avoiding nonpreferred lollipops, either based on comparisons of absolute
quantity (8 vs.12) or proportions (12/22 vs. 8/80), they should choose the
lollipop drawn from the 8:8:64 population. Finally, if infants make choices
based on comparisons of absolute quantity of preferred lollipops across
populations (8 vs. 8), they should perform at chance. Infants should only
make the inference to search in the location containing a sample from the
8:12:2 location if they are a) motivated by increasing the probability of
obtaining a preferred lollipop and b) reasoning based on comparisons of
proportions of preferred lollipops to all other lollipops across the populations
(8/22¼ 0.36 vs. 8/80¼ 0.10). On the test trial, the experimenter did not
allow infants to see inside the cup that they chose, and the experiment
concluded with a final posttest. In this posttest, the preference trial was
repeated (with sides of the lollipops counterbalanced) to ensure that infants
did in fact continue to prefer the same lollipop that they originally chose.

Infants in this experiment chose the sample from the 8:12:2 population
more often than would be expected by chance. Thus, infants appear to use
proportional information and not comparisons of absolute quantities of
either preferred or nonpreferred objects to guide their choices in this task.
Additionally, over 90% of infants continued to prefer the lollipop that they
had originally chosen on the preference posttest. Together, the results of
these three experiments demonstrate that infants can accurately navigate the
world by using probabilistic computations to guide their search for desired
objects. This ability to reason based on proportions, rather than absolute
quantities, is the hallmark of true probabilistic inference.

2.4. Summary and Discussion of the Infant Empirical Work
We have reviewed three bodies of research suggesting that infants engage in
probabilistic inference. In the experiments investigating rudimentary
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probabilistic inference in infancy, we see that infants as young as 6 months
can make basic generalizations from samples to populations and vice versa
with large numbers of objects (Denison et al., in press; Xu & Garcia, 2008).
It is also true that infants can make judgments about the likely outcome of
a single sampling event when the population is known, with numbers of
objects within the limits of object tracking (Teglas et al., 2007). Beyond this,
infants can integrate distributional information with substantive domain
knowledge (Denison & Xu, 2010a; Denison et al., in preparation; Gweon
et al., 2010; Teglas et al., 2011; Xu & Denison, 2009); 11- and 15-month-
old infants can flexibly use either psychological and physical knowledge or
probability information to make inferences in contexts that involve sampling
from a distribution. They can also fully integrate knowledge of naive physics
in probabilistic inference, relying on accurate probability computations and
not representativeness when these two inference strategies conflict. Finally,
the experiments examining single-event probabilistic inference in a choice
task reveals three additional pieces of evidence in favor of infants’ abilities to
make probabilistic inferences: infants can use probability information to
guide search and to fulfill their own desires, and they do not do this by
making comparisons of absolute quantities but rather by accurately
computing and comparing proportions within and across populations.

3. IMPLICATIONS AND CONCLUSIONS

The evidence reviewed above in support of probabilistic inference in
young infants suggests that human learners may have an intuitive notion of
probability. This ability may provide the foundation for inductive inference
across a variety of domains beginning early in development. Thus, the
evidence reviewed here suggests that infants, beginning at least by 6 months,
possess one of the key prerequisite abilities for an inductive inference
mechanism based on the principles of rational Bayesian inference. Infants’
capacity to go beyond the data given to make generalizations from samples
to populations and vice versa helps to reveal how it is that young children are
so proficient at learning from limited data.

One important question left open is whether infants are computing
probabilities over discrete, individual objects or over continuous regions of
color. In studies on numerical reasoning, researchers carefully disentangle
whether infants or nonhuman animals use discrete (e.g. number of elements
in a visual–spatial array or number of sounds in a sequence) or continuous
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quantities (e.g. the total area covered by all the elements in a visual–spatial
array or the total duration of a sound sequence) in their computations. This,
of course, is because only evidence for the former would constitute evidence
for representations of number (Brannon, Abbott, & Lutz, 2004; Lipton &
Spelke, 2003; Xu & Spelke, 2000). Estimating probabilities is interestingly
different: one can estimate proportions using either discrete or continuous
quantities. For example, if there are about four red balls in a jar of about 20
total, the proportion of red ones is 0.2 and if I make a single random draw
from the jar, the probability of drawing a red one is also 0.2. Likewise, if the
length of a straight line is about the length of my hand and the red part of the
line is about the length of my middle finger, the proportion of red in the full
segment is about 0.4. If I drop a small object on the line, the probability of it
landing on the red segment is about 0.4. Even though current experiments
cannot disentangle these two possibilities, it does not detract from the
finding that infants can compute probabilities. Additionally, it seems more
likely that infants in most of these experiments were reasoning about the
proportions of individual objects and not continuous quantities, given much
evidence suggesting that young infants can reason about discrete objects but
not continuous quantities (e.g. Feigenson, Carey, & Spelke, 2002; Huntley-
Fenner, Carey, & Solimando, 2002; Rosenberg & Carey, 2009, though see
Hespos, Ferry, & Rips, 2009). Take, for example, the experiment suggesting
that infants can integrate both probabilistic and deterministic physical
constraints in probabilistic inference. Much of infants’ knowledge of naive
physics, including the understanding of cohesion, does not translate to
continuous arrays like piles of sand (Spelke & Born, 1993). Thus, it seems
unlikely that infants would be able to integrate such a rule in their proba-
bility computations if they were not computing over objects. Regardless,
future studies should investigate whether infants are able to compute
probabilities using both discrete and continuous variables. In fact, some
evidence suggests that older children perform better at proportional
reasoning when dealing with continuous rather than discrete quantities
(Boyer, Levine & Huttenlocher, 2008; Jeong, Levine, & Huttenlocher,
2007; Spinillo & Bryant, 1999). It is an open question as to whether or not
infants would perform better with one stimuli type or the other.

The work on infant probabilistic reasoning reported here has implica-
tions for the large body of literature investigating rational inference in
human adults, adding to a growing body of research suggesting that human
reasoning may not be as irrational as was once thought (Chater & Oaksford,
2008; Gigerenzer, 2000; Gigerenzer & Gaissmaier, 2011; Griffiths &
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Tenenbaum, 2006; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). In
the classic experiments by Tversky and Kahneman (1974, 1981) examining
adult reasoning, they found that people often use mental shortcuts such as
the availability heuristic or the representativeness heuristic to make judg-
ments under uncertainty and that use of these heuristics often result in
biased, incorrect inferences. The findings reported in the infant experiments
here suggest that infants do not begin by relying on representativeness or
similarity heuristics in making probabilistic inferences in cases where accu-
rate analytical reasoning and heuristic reasoning should produce conflicting
results. According to these findings, the use of heuristics may be a later-
developing phenomenondthe accumulation of factual knowledge may be
the source of these heuristics and they may indeed provide useful shortcuts in
real-life situations (Kokis et al., 2002). Further exploration of heuristic
reasoning in infancy and early childhood is needed to investigate whether or
not young learners can rely on heuristics under appropriate circumstances to
increase efficiency when a full analysis of probabilities is not required.

4. FUTURE DIRECTIONS

We have reviewed a growing body of evidence suggesting that
sophisticated probabilistic inference abilities are present early in infancy.
Future work with infants should continue to focus on a number of questions
left open from the experiments reported here. First, future studies should
continue to explore the age at which this ability comes online. Are infants
younger than 6 months really incapable of making inferences between
samples and populations or might a different task reveal competence at
earlier ages? If infants younger than 6 months cannot compute or estimate
probabilities, this will surely have implications for the kind of learning that
could possibly take place within the first 6 months and for how the ability to
make probabilistic inferences comes to be.

Second, future work should explore whether or not infants can use
sampling information to acquire new knowledge early in infancy in domains
such as naive physics and psychology. The work reported here suggests that
the ability to compute probabilities is integrated with substantive domain
knowledge early on in infancy. If making generalizations from samples to
populations is truly a mechanism for learning or a prerequisite to inductive
inference in infancy, the next step is to examine whether young infants can
use sampling information to learn a new rule in a specific domain. For
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example, infants should be able to use the information gained from
observing a small number of instances of physical events to make general-
izations that allow them to establish rules in naive physics that they have not
yet acquired. Recent work suggests that older infants and preschoolers are
capable of using sampling information to infer that an agent has a preference
for a particular object (Kushnir, Xu, & Wellman, 2010; Ma & Xu, 2011). It
remains to be seen if younger infants can use sampling information to make
similar inferences.

Finally, probabilistic inference may be linked to the two known systems
used for quantitative reasoning throughout the lifespan. That is, in the
experiments that examine probabilistic inference with large populations and
multiobject samples (e.g. Xu & Garcia, 2008), approximate numerosities are
likely provided by the analog magnitude system to establish ratio informa-
tion. In the lottery machine experiments, object files, which can be used to
track quantity, are likely involved in allowing infants to recognize which of
two object types is more numerous in each set, allowing an estimate of
which object type is most likely to be sampled on a random draw. If these
two systems for reasoning about quantity provide the input to probabilistic
computations, predictable limits should be encountered in probabilistic
reasoning, mirroring those found in numerical reasoning (see Feigenson,
Dehaene, & Spelke, 2004). It will be interesting to examine how numerical
reasoning interacts with probabilistic inference in future studies.

In conclusion, the empirical work reviewed in this chapter reveals that
notions of probability and randomness are available to children far earlier in
development than was first posited. The picture of the young child’s
probability concept has changed dramatically over the past 60 years as
researchers have revealed competences in infants that were not initially
credited to children until they reached the first or second grade.

The broad finding that infants can make generalizations from samples to
populations provides important insight into classic debates concerning the
initial cognitive state of the human infant and the learning mechanisms that
are available to support conceptual change. The empirical results reviewed
in this chapter indicate that probabilistic inference may be an innate learning
mechanism that is the foundation for later learning, and such domain-
general learning mechanisms may give rise to domain-specific knowledge
(Teglas et al., 2007; Xu & Griffiths, 2011). Future work will not only
explore further the nature and limits of early probabilistic reasoning but also
how this kind of learning mechanism may be used to construct new
concepts and new knowledge.
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Abstract

Theoretical rationality and practical rationality are, respectively, properties of an indi-
vidual’s belief system and decision system. While reasoning about instrumental actions
complies with practical rationality, understanding communicative actions complies
with the principle of relevance. Section 2 reviews the evidence showing that young
infants can reason about an agent’s instrumental action by representing her subjective
motivations and the episodic contents of her epistemic states (including false beliefs).
Section 3 reviews the evidence showing special sensitivity in young human infants to
some ostensive behavioral signals encoding an agent’s communicative intention. We
also address the puzzle of imitative learning of novel means actions by 1-year olds and
argue that it can be resolved only by assuming that the infant construes the model’s
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demonstration as a communicative, not an instrumental, action. Section 4 reviews the
evidence for natural pedagogy, a species-unique social communicative learning
mechanism that exploits human infants’ receptivity to ostensive–communicative
signals and enables infants to acquire kind-wide generalizations from the nonverbal
demonstrations of communicative agents. We argue that the essentialist bias that has
been shown to be involved in children’s concepts of natural kinds also applies to
infants’ concepts of artifacts. We further examine how natural pedagogy may also boost
inductive learning in human infancy.

1. INTRODUCTION: THE MANY FACES OF HUMAN
REASON

Philosophers draw a basic distinction between practical and theoretical
rationality. While practical rationality is a property of an agent’s decision
system, theoretical rationality is a property of an agent’s belief system. An
agent’s decision is rational if it selects an action that is likely to maximize the
agent’s utility function (i.e. the agent’s desire or preference about, e.g.,
commodities) in light of her beliefs (about, e.g., the prices of commodities).
A belief is deemed rational if its content stands in deductive and/or inductive
relations to the contents of other accepted beliefs, which warrant its
acceptance (cf. Davidson, 1980, 2004 and Dennett, 1978, 1987).

The human ability to entertain reasons for believing, however, is not
restricted to theoretical rationality so defined. Humans evolved species-
specific ways to acquire beliefs based on communication (Recanati, 2001;
Sperber, 1997). As a result, they are unique in their evolved capacity to
create, transmit, maintain, and stabilize across generations an increasing body
of cultural beliefs ranging over technology, social traditions, history, religion,
the law, the arts, science, and mathematics. To simplify, humans can accept
a culturally transmitted belief for one of two reasons (or both): its content or
the authority of its source (Sperber, 1997, 2001, Sperber et al., 2010).

To accept a culturally transmitted belief on account of its content is to
grasp its deductive relations to the contents of other beliefs and/or its
inductive relations to the evidence, in accordance with the principles of
theoretical rationality. A culturally transmitted belief can also be accepted on
account of the authority of its source. We shall call deferential such culturally
transmitted beliefs (Recanati, 1997). A deferential belief can be accepted
either because its source is known, remembered, and judged to be reliable
(or trustworthy) or because it is taken to be shared common knowledge
among members of one’s community. When accepted by deference to the
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authority of its source, the content of a culturally transmitted belief may to
a large extent remain cognitively opaque to the individual who subscribes to
it. In some cases, further cognitive processing may make the opaque content
of a deferentially acquired belief more transparent by tracking its inferential
connections to the contents of other beliefs and to later acquired relevant
evidence. In human adult social life, deferential beliefs are ubiquitous, and so
are beliefs whose contents may remain cognitively opaque to the individuals
who accept them throughout their lives.

Since it is based on trust (i.e. judgments about the authority of their source),
the acceptance of deferential beliefs is not entirely groundless or unjustified. To
accept a deferential belief is to fulfill the informative intention of an agent who
performed a communicative action in accordancewith the principle of relevance
(cf. Sperber&Wilson, 1995, 2012;Wilson&Sperber, 2002).On the approach
by Sperber&Wilson (1995), a piece of communicated information is said to be
more relevant than a competing one if by attending to the former the addressee
of the communicative act can derive more cognitive benefit than by attending
to the latter. The cognitive benefit of a relevant piece of information is in turn
conceptualized in terms of a trade-off between the cognitive effects produced
by the novel implications arrived at and the cognitive effort devoted to pro-
cessing these implications.

From birth on, human infants are exposed to two basic kinds of intentional
agency: instrumental and communicative agency (Gergely, 2010). While they
observe agents perform instrumental actions as ameans to satisfy their subjective
desires and preferences, infants are also the recipients of the actions of agents
with communicative intentions whose fulfillment depends on their being
recognized by their addressees. Making sense of an agent’s noncommunicative
instrumental action requires the third-personal ascription to the agent of a goal
or intention to achieve some desirable outcome in light of her beliefs about the
world, in accordance with the principle of practical rationality (Dennett, 1987;
Fodor, 1992). By contrast, when being addressed by an agent’s ostensive–
communicative action, infants must make sense of the agent’s communicative
intention (Csibra, 2010) to enable inferences to the intended meaning, in
accordance with the principle of relevance (Sperber & Wilson, 1995).

Recent evidence shows that surprisingly even before the end of their first
year, human infants are able to ascribe and represent both the subjective
motivations and episodic (or context bound) contents of epistemic states of
agents of instrumental actions. There is also significant evidence indicating
that preverbal infants are uniquely receptive to ostensive signals by which
communicative agents make manifest that they have a communicative
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intention. Further evidence suggests that this evolved receptivity to osten-
sive signals supports an early social learning mechanism (natural pedagogy),
whereby preverbal infants are able to interpret some of the nonverbal deictic
actions and demonstrations of communicative agents as referring to a kind
and displaying a property of the kind. If so, then infants can form some
general deferential beliefs about the world from their interpretation of
communicative agency. Clearly, this social learning mechanism could not
work unless the reception of ostensive signals induced an attitude of basic
epistemic trust in the infants toward their communicative informants
(Gergely, Egyed, & Kir�aly, 2007).

We have two main goals in this chapter. Our first goal is to argue that
much of early social cognition of human infants is shaped by the different
types of inferential constraints imposed by the principle of practical ratio-
nality and the principle of relevance on interpreting acts of instrumental and
communicative agency. Our second goal is to examine the scope and limits
of the trust-based communicative learning system of natural pedagogy that
underlies the fast intergenerational transfer of knowledge about the world by
enabling human infants to acquire deferential beliefs about kinds. We shall
argue that natural pedagogy enables infants to fast learn generalizations about
artifact kinds. As natural pedagogy is a social cultural learning mechanism
based on the principle of relevance, it may interact in subtle and complex
ways with the inductive and statistical principles, which underlie belief
formation based on theoretical rationality (cf. Section 4.3).

In Section 2, we review recent developmental evidence showing that
young infants can represent the subjective motivations and episodic belief
contents of agents of instrumental actions. In Section 3, we review the
evidence showing the early sensitivity of human infants to ostensive–
communicative agency and we address the puzzle of imitative learning. In
Section 4, we review evidence showing the early presence of natural
pedagogy as a means to learn about artifact and social kinds in human infancy.
We further examine the question of how relevance-based processes at work
in natural pedagogy combine with principles of statistical inference that have
recently been shown to help young children learn about causal relationships.

2. THIRD-PERSONAL REASONING ABOUT
INSTRUMENTAL AGENCY IN YOUNG INFANTS

Following the famous paper by Premack and Woodruff (1978), much
developmental research on the ontogenesis of theory of mind in human
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children has focused on the emerging ability to pass the standard elicited false
belief task (cf. Wimmer & Perner, 1983). In this task, a participant who
knows the location of some object is asked to predict where an agent with
a false belief about its location will look for it. Two decades of intense
developmental research showed that not until they are in their fourth year
are human children able to pass the standard false belief tasks (Wellman,
Cross, & Watson, 2001).

However, starting with the seminal paper by Onishi and Baillargeon
(2005), recent evidence has shown that before they reach their second year,
human infants are able to ascribe epistemic states, including false beliefs, to
others (see Caron, 2009; Gergely, 2010; Jacob, in press, for reviews).
Exploitation of the violation-of-expectation and other paradigms has
enabled developmental psychologists to reduce some of the cognitive
demands that passing the standard false belief tasks required (such as language
understanding, pragmatic competence and inhibitory control). Further-
more, the picture supported by our review of the recent developmental
evidence is hard to square with the widespread assumption that infants start
with a “simple” desire psychology before they can move to a belief–desire
psychology, as was suggested by Wellman (1990) and others.

2.1. Ascribing Motivational States to Others
There is evidence that before the end of their first year, infants can track
others’ subjective motivations. In a series of studies applying violation-of-
expectation looking paradigms, Csibra, Gergely, and collaborators have
shown that infants look longer when an agent selects a less efficient instead of
a more efficient action alternative as a means to achieving a goal state in the
presence of some situational constraint (Csibra, Bír�o, Ko�os, & Gergely,
2003; Csibra, Gergely, Bír�o, Ko�os, & Brockbank, 1999; Gergely, N�adasdy,
Csibra, & Bír�o, 1995). Overall, the findings of Csibra and Gergely strongly
suggest that infants interpret observed instrumental actions by evaluating the
efficiency of the agent’s action as a means to achieve a goal, in light of relevant
situational constraints (cf. Gergely & Csibra, 2003).

In a two-object choice paradigm, Woodward (1998) showed young
infants a human hand repeatedly reach for and contact one of two toys. After
the locations of the toys were switched, infants looked longer when the
hand reached for the new toy at the old location rather than the old toy at
the new location. No such differential looking was found, however, in
infants between 6 and 12 months of age if either the agent was a rigid rod or
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the hand approach was unfamiliar as it ended by contacting the object with
the back-of-the-hand (Woodward, 1998, 1999). Woodward interpreted her
findings as evidence that young infants ascribe goals only to agents whose
perceptual appearance bears a strong similarity to their own bodily
appearance and whose movements they can map onto their own motor
repertoire. This view of goal ascription has been argued to support the
widely shared assumption that, unlike inferring others’ epistemic belief
states, the ascription of motivational states (such as goals, intentions, or
emotions) to an agent can be accomplished by cognitively less demanding
automatic and noninferential processes of direct perceptual–motor matching
and motor resonance induced by the perceptual similarity of the observed
behaviors of others to familiar action schemes already present in the infant’s
motor repertoire (cf. Meltzoff, 2005; Tomasello, 1999; Rizzolatti &
Craighero, 2004).

Further findings have shown, however, that neither of these conditions is
necessary nor sufficient for ascribing a goal to an agent by young infants.
First, Kir�aly, Jovanovic, Aschersleben, Prinz, and Gergely (2003) and
Jovanovic et al. (2007) have shown that if 8- and even 6-month olds are first
familiarized with one of two toys being repeatedly not only contacted but
also slightly displaced by the unfamiliar back-of-the-hand action, then they
look longer in the test if the back-of the-hand action displaces a novel toy at
the old location instead of the same toy now at the new location. Second,
Biro and Leslie (2007) have shown that if 6-month olds see a rigid rod
approach one of two targets from several different angles, repeatedly pick it
up by contacting three different parts of the toy (cues of equifinal variations
of behavior), then they look longer if the rod performs the same action on
a different target at the old location rather than on the same target at
a different location. Luo and Baillargeon (2005) report a study in which 5-
month olds first saw a self-propelled box repeatedly move to and contact
one of two targets. During the test phase, 5-month olds looked longer when
the box moved to contact the novel object at the old location rather than the
old target at the new location.

These (and other) findings show that motor familiarity with the agent’s
action and perceptual similarity between the agent’s and the infants’ bodies
are not necessary for interpreting an agent’s action as goal directed. This is in
line with studies by Gergely and Csibra (2003) that demonstrated early goal
attribution even to animated abstract two-dimensional (2D) figures as long as
they showed efficient goal approach. In fact, 6- and 9-month olds can
interpret a wide range of unfamiliar objects (such as a robot, a box, abstract
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2D figures, and even biologically impossible hand actions, see Southgate,
Johnson, & Csibra, 2008) as goal-directed agents as long as their behaviors
exhibit rational sensitivity to relevant changes in their situational constraints
by modifying their target-directed approach contingently and in a justifiable
manner obeying the principle of rational (efficient) action (Bír�o & Leslie,
2007; Csibra, 2008; Csibra et al., 1999, 2003; Gergely, 2003; Gergely et al.,
1995; Hernik & Southgate, 2012; Kamewari, Kato, Kanda, Ishiguro, &
Hiraki, 2005; Luo & Baillargeon, 2005; Wagner & Carey, 2005; Southgate
et al., 2008). Furthermore, the evidence shows that if in Woodward’s object-
choice paradigm during the familiarization trials infants see an agent
repeatedly move to the same object in the absence of a competing target,
then they do not look longer when the agent moves to contact a novel target
at the old location rather than the old object at a new location in the test trials
(Luo & Baillargeon, 2005; Hernik & Southgate, 2012). This strongly suggests
that what Woodward’s object–choice paradigm tests is not goal-ascription
proper but instead the ascription of a contrastive preference (i.e. a subjective
disposition) to the agent (cf. Gergely, 2010; Jacob, 2012, for further analysis).

In sum, the evidence reviewed above reveals that very young infants
ascribe goals and preferences to the agent of an instrumental action. In
accordance with the principle of practical rationality, the agent should be
expected to execute an instrumental action that will increase the probability
that she will satisfy her motivation in light of what she believes. The question
arises: do infants expect an agent to perform an instrumental action, not only
as a function of her motivations but also as a function of what she believes?

2.2. Ascribing Epistemic States to Others
In the last decade, a number of studies have offered new evidence that before
the end of their second year, human infants are able not only to ascribe
motivations to others but also to represent the contents of others’ false beliefs
and to ascribe to others false beliefs that they do not share. For example,
Buttelmann, Carpenter, and Tomasello (2009) found that the helping
behavior of 25- and 18-month olds is reliably modulated by their ability to
ascribe to the agent of an unsuccessful attempt at retrieving a toy from one of
two boxes either a true or a false belief about the location of the toy (for
further evidence showing false belief ascription by 24- and 18-month olds, see
Southgate, Senju, &Csibra, 2007 and Southgate, Chevallier, &Csibra, 2010).

Further important studies using the nonverbal violation-of-expectation
looking paradigm provided initial evidence that even 13- and 15-month
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olds are able to ascribe false beliefs to others. In the experiment by Onishi
and Baillargeon (2005), 15-month olds saw an agent motivated to find a toy
and reach for it in either a green or a yellow box. Onishi and Baillargeon
compared four conditions, in each of which the infants knew the true
location of the toy: the infants could see the agent reach for the toy in either
the green or the yellow box while the toy was either in that location or not.
They found that infants looked reliably longer when they saw the agent
reach for the toy either in the wrong location while she had a true belief
about the toy’s location or in the right location while she had a false belief.
Surian, Caldi, and Sperber (2007) further reported that 13-month olds look
longer at test trials in which an agent retrieves its preferred food when it is
hidden from the agent’s (but not the infant’s) view by a high barrier than
when it is visible to the agent and they also look longer when the food
hidden from the agent’s view by a barrier has been placed there in the agent’s
absence than in the agent’s presence. Kov�acs, Tégl�as, and Endress (2010)
provide further intriguing evidence that even 7-month olds automatically
track and represent others’ true and false beliefs.

Further evidence making use of the Woodward choice-based preference
attribution paradigm suggests that even before the end of their first year,
human infants modulate their ascription of preferences as a function of the
content of the epistemic state ascribed to the agent. For example, in the
familiarization trials, Luo and Baillargeon (2007) showed 12.5-month olds
an agent repeatedly reach for the same object either when she knew that
there was another object present or when she did not (while the two objects
were visible to the infants all along). Infants looked longer when the agent
selected the alternative object when it was made visible during the test phase,
only if she had already known that there was another object present from
having seen it put there earlier during the familiarization phase. Going one
step further, Luo (2011) addressed the question whether 10-month olds
would ascribe a preference to an agent when she falsely believed there to be
either two objects or only one present. She found that 10-month olds did
ascribe a preference to an agent if she mistakenly believed that two objects
were present on the stage, while unbeknownst to her, a hand removed one
of the objects from the side that was hidden from the agent’s view but not
from the infant’s view. But they did not ascribe a preference to the agent
when she knew that there was only one object present. Conversely, infants
failed to ascribe a preference to the agent if she mistakenly believed that only
one object was present on the stage, while unbeknownst to her, a human
hand added on the stage a second object that was hidden from the agent’s
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view, but not from the infants’ view. Infants, however, did ascribe a pref-
erence to the agent when she knew that there were two objects present.

In all the scenarios previously reviewed showing that before the end of
their first year human infants are able to ascribe false beliefs to an agent, the
agent’s action is directed toward some target and it depends on both the
agent’s epistemic state and her motivation. In the experiment by Onishi and
Baillargeon (2005), the infants seem to take the agent’s motivation to find an
object as background information (from the familiarization trials) and they
look longer in the test trials when the agent fails to act in accordance with
the content of her true or false belief. Conversely, in the Woodward choice-
based design exploited by Luo (2011), the infants seem to extract from the
familiarization trials, as background information, the content of the agent’s
epistemic state as a condition for ascribing a preference to the agent and they
look longer in the test trials only when the agent with a preference fails to act
in accordance with it.

3. SECOND-PERSONAL UNDERSTANDING OF
COMMUNICATIVE AGENCY IN YOUNG INFANTS

The evidence reviewed in Section 2 shows that young human infants can
ascribe motivations and epistemic states to agents of instrumental action, in
accordance with the principle of practical rationality. We now turn to
developmental research demonstrating human infants’ species-unique
preparedness to recognize and interpret nonverbal communicative actions that
are ostensively addressed to them. While a third-person observer expects an
agent to execute an instrumental action in accordance with the principle of
practical rationality, an addressee of an ostensive–communicative act expects
the communicative agent to act in accordance with the principle of rele-
vance (cf. Sperber & Wilson, 1995).

3.1. Preverbal Infants’ Receptivity to Ostensive Referential
Communication
Sperber and Wilson (1995) call ostensive stimuli the signals whereby an agent
makes manifest to an addressee her communicative intention to manifest
some new relevant information for the addressee (i.e. her informative
intention). Right after birth, infants display species-specific sensitivity to, and
preference for, some nonverbal ostensive behavioral signals, such as eye
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contact, infant-directed speech or motherese, and infant-contingent distal
responsivity (see Csibra, 2010; Csibra & Gergely, 2009, for reviews).

Recent evidence shows that from very early on these ostensive signals
generate a referential expectation in infants (Csibra & Gergely, 2006, 2009).
Senju and Csibra (2008) report that 6-month olds followed an agent’s gaze
shift to one of two objects but only if it had been preceded by ostensive
signals (either eye contact or infant-directed speech) addressed to the infant.
In a study by Csibra and Volein (2008), after the agent produced ostensive
signals, 12- and 8-month olds followed her gaze shift to one of two locations
hidden from the infants’ view by occluders. When the occluders were
removed, an object was revealed either at the location where the agent had
looked or at the other location. Infants at both ages looked longer at the
empty location if the agent had looked at it than if she had not, showing that
they expected the agent to look at a location occupied by a referent object
rather than at an empty location. Furthermore, Deligianni, Senju, Gergely,
and Csibra (2011) in an automated eye tracker-based study used an infant-
induced contingent reactivity paradigm to demonstrate that 8-month olds
gaze follow an unfamiliar object’s bodily orientation response toward one of
two targets, but only if the object had been reacting contingently before
(producing self-propelled body movements such as tilting) to being looked
at by the infant (see also Movellan & Watson, 2002; Johnson, Slaughter, &
Carey, 1998, for similar results with 10- and 12-month olds).

Recent studies also provide converging evidence that when engaged in
an ostensive–communicative interaction with an adult (such as joint play
with objects), 12- and 18-month olds show early competence in drawing
correct pragmatic inferences that enable them to identify the intended
referent out of a number of alternative objects present when interpreting
a communicator’s ambiguous ostensive referential pointing gesture (e.g.
Moll & Tomasello, 2004; Tomasello & Haberl, 2003). As shown by
Southgate et al. (2010), in a communicative interactive context, 18-month
olds can even correctly infer on pragmatic grounds the intended referent of
another’s false belief based pointing gesture. In this study, an adult osten-
sively engaged 18-month olds in a joint play activity with new toys. She
placed the two novel unnamed objects in two separate boxes and then
temporarily left the room. In her absence, a second experimenter switched
the objects so that now they were each in opposite boxes. Shortly after, the
first experimenter returned to continue their game apparently ignorant
about the toys having been switched. Ostensively communicating to the
infant, she pointed to one of the two (closed) boxes to request the baby to
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give her the toy from the box that she (falsely) believed to contain the
intended object. In this communicative episodic context, infants were able
to infer that the intended referent of the pointing gesture was not the object
actually in the designated box, but the toy in the other box. Accordingly,
they opened the other box (not the one the requester was pointing at) to give
her the object that she meant to request by her false belief-based pointing
gesture (cf. Buttelmann et al., 2009).

Furthermore, by the time they are 12-month-old, human infants are not
only able to referentially understand another’s communicative pointing but
they also start to actively use ostensive referential pointing themselves to
establish shared attention with the adult over a specific referent object to fulfill
different types of communicative functions such as requesting the object from
the adult (protoimperative pointing, see Bates, Camaioni, & Volterra, 1975),
sharing with the adult their currently felt subjective motivational attitude
toward the specific referent, such as liking and positive interest (proto-
declarative pointing, see Liszkowski, Carpenter, Henning, Striano, & Tom-
asello, 2004; Tomasello, Carpenter, & Liszkowski, 2007), or inquiring to
receive new and relevant information about the novel object and its kind
(protointerrogative pointing, see Begus & Southgate, 2012; Southgate, van
Maanen, & Csibra, 2007; Kov�acs, Tauzin, Tégl�as, Csibra, & Gergely, 2012).

In sum, the evidence shows that human infants are prepared from the start
to recognize nonverbal ostensive referential signals and action–demonstra-
tions addressed to them as encoding another’s communicative intention to
manifest new information about the referent (the informative intention) that
is relevant for the addressee. As Csibra (2010) has argued, very young infants
might well be in a position similar to that of a foreign addressee of a verbal
communicative act, who is unable to retrieve a speaker’s informative
intention for lack of understanding the meaning of the speaker’s utterance.
Nonetheless, the foreign addressee may well recognize being the target of the
speaker’s communicative intention on the basis of the speaker’s ostensive
behavior. Furthermore, ostensive signals to which preverbal human infants
have been shown to be uniquely sensitive can plausibly be said to code the
presence of an agent’s communicative intention. If so, then little (if any)
further work is left for preverbal infants to infer the presence of a speaker’s
communicative intention after receiving ostensive signals.

Finally, in all the studies reviewed above, the communicative interac-
tions were cooperative actions involving shared goals of immediate episodic
relevance. Infants were able in such contexts to disambiguate the referent of
the communicator’s nonverbal deictic referential action, even when the
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deictic gesture was based on false belief (about, e.g., the location of the
intended referent). Crucially, in the episodic context of joint actions where
communicator and addressee have shared goals and common knowledge
about a restricted set of relevant familiar individual objects, nonverbal deictic
pointing owes its referential success to the fact that it directs the other’s
attention to the particular intended referent by highlighting its spatial location
(which is one of its typically transient and episodic properties). The fact
that nonverbal deictic gestures are anchored in a socially shared episodic
context seems to impose severe restrictions on their referential scopeda
limitation emphasized by Tomasello (2008) when he points out that “the
almost complete dependence of pointing on common ground between
communicator and recipient is thus both its strength and its weakness”
(pp. 202–203).

However, in apparent contrast to this assumption, a recent study by
Egyed, Kir�aly, and Gergely (2012) demonstrates the special power of
ostensive signals to induce a nonepisodic interpretation of a communicative
agent’s object-directed emotion gestures as conveying relevant information
about motivational dispositional properties such as preferences that are socially
shared and, as such, can be generalized and attributed to other agents who are
not part of the shared episodic context. 18-month olds saw an adult agent
display a positive and a negative object-directed facial–vocal emotional
expression (liking vs. disgust), one directed toward a novel object on her left,
the other toward another unfamiliar object on her right. In the ostensive–
communicative condition, before displaying her object-directed emotional
expressions, the agent first ostensively addressed the infant. In the
noncommunicative demonstration context, the agent neither looked at nor
talked to the infant before displaying her pair of object-directed emotion
expressions. After the first agent left the room, a new agent came in and
without looking at either object, she requested the infant to give her one of
them. In the ostensive–communicative condition, but not in the noncom-
municative observation condition, infants reliably gave to the second agent
the object toward which the first experimenter had emoted positively.
Finally, in the noncommunicative condition, infants reliably gave to the first
agent the object that had been the target of her own positive emotional
expression. In the latter case, the application of the principle of practical
rationality to an object-directed action would require the ascription to the
agent of a person-specific subjective motivational state of contrastive pref-
erence for one over the other of the two objects. Application of the principle
of relevance triggered by the presence of ostensive cues, however, induced
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in infants the assumption that the relevance of the contrastive preference
displayed toward the two objects goes beyond the episodic situation and
demonstrates a socially shared dispositional property that can be relevantly
generalized to other members of one’s social group as well.

3.2. A Puzzle about Imitative Learning
A number of psychologists, including Tomasello and colleagues, have taken
imitation to be a process that both complies with the principle of practical
rationality and also underlies cultural learning, i.e. the intergenerational
transmission of cultural knowledge (cf. Tomasello, 1996, 1999; Tomasello,
Kruger, & Ratner, 1993; Tomasello, Carpenter, Call, Behne, & Moll, 2005;
Buttelmann, Carpenter, Call, & Tomasello, 2007). In particular, Tomasello
et al. (1993) have hypothesized that, unlike blind mimicry, true imitation
requires the imitator to construe the agent’s intention as a rational choice of an
action plan, i.e. as an efficient means toward achieving her goal, in accordance
with the principle of practical rationality. The question is: to what extent can
the rational imitation model account for imitative learning, i.e. human
children’s ability to interpret and reproduce an agent’s selection of some novel
action as a means to achieving her goal. As Gergely, Bekkering, and Kir�aly
(2002) have noticed, the question is made pressing by Meltzoff’s (1988) study
in which 14-month olds observed an adult model perform an unusual head
action whereby she turned on a magic light box by leaning forward and
applying her forehead to the box. Meltzoff (1988) reports that after a week
delay, 67% of the infants who had watched it imitatively reproduced the
agent’s odd head action. On the face of it, this result is a puzzle for the rational
imitation approach because themodel’s head action can hardly be evaluated as
an efficient means to achieve the goal of turning the light on.

To address this puzzle, Gergely et al. (2002) had 14-month olds watch
a model perform the odd head action as a means to switching on a light box in
one of two contexts: in the hands-occupied context, the model first pretended
that she was chilly, covered her shoulders with a blanket, and used her hands to
hold the blanket around her shoulders, before demonstrating the odd head
action. In the hands-free context, she also pretended to be chilly, covered her
shoulderswith a blanket, and tied a knot on it thereby freeing her hands, which
she ostensibly placed unoccupied on the table, before demonstrating the odd
head action. Gergely et al. (2002) found that while in the hands-free context,
69% of the children replicated the odd head action, in the hands-occupied
condition, only 21% of them did. Instead, in the hands-occupied context,
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infants freely used their own hands. (For further confirmation of the influence
of social communicative contexts on selective imitation in 12- and 14-month
olds, cf. Buttelmann,Carpenter,Call, &Tomasello, 2008;Kir�aly, 2009;Kir�aly,
Csibra, & Gergely, 2004; Kir�aly, Csibra, & Gergely, 2012, Kir�aly, Egyed, &
Gergely, 2012; Schwier, van Maanen, Carpenter, & Tomasello, 2006; Zmyj,
Daum, & Aschersleben, 2009.)

While the model’s choice of the head action seems rational in the hands-
occupied context, so does the infants’ choice to (nonimitatively) emulate the
agent’s goal by selecting a more efficient means action available to them
(whose hands were unoccupied). So far this is in accordance with the
rational imitation model, which assumes “that infants take into account the
constraints on the demonstratordthe reasons why she acted the way she
diddas well as the constraints on themselves and then choose an action
themselves rationally” (Buttelmann et al., 2008, p. 625).

But the puzzle is: why did the majority of infants reenact the experi-
menter’s odd head action in the hands-free context when both the model
and the infant could have used their own free hands and thereby select
a more efficient means?1 In answer to this question, Tomasello and
colleagues have proposed a slightly different version of the rational imitation
model: they have surmised that the more an agent’s action is construed as
displaying the freedom of the agent’s choice, the more the infants are likely to
reproduce the model’s action. Arguably, the agent’s selection of the head
action as a means to switching on the light box reflects the infant’s sensitivity
to the agent’s freedom of choice in the hands-free condition, where her
decision to perform the odd head action was less constrained by the external
circumstances than in the hands-occupied condition (cf. Buttelmann et al.,
2007). On this version of the rational imitation model (as well as on the
initial “rational imitation” hypothesis by Gergely et al., 2002), infants
reproduced the agent’s unexpected head action as a way of figuring
(learning) what the agent’s reason for his action was.

3.3. Solving the Puzzle about Imitative Learning
If, however, the agent’s goal is to switch on the light, then there is no way
that by performing the head action (rather than by using their own hands),

1 In fact, in the hands-free context, all infants performed at least one (and typically more)
nonimitative hand actions to emulate the goal by using their hand to touch the light box
before reenacting the odd head action (cf. Gergely et al., 2002; Kir�aly, Csibra, & Gergely,
2012; Kir�aly, Egyed, & Gergely, 2012; Paulus, Hunnius, Vissers, & Bekkering, 2011).
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an imitator could discover to what extent it is an efficient means to achieve
the agent’s goal, in accordance with the principle of practical rationality. Nor
could performing the head action allow an imitator to discover to what
extent the head action is a more efficient means to achieve the agent’s goal in
the hands-free than in the hands-occupied context. But infants imitated the
head action far more often in the hands-free than in the hands-occupied
context. Furthermore, as Gergely and Csibra (2005, 2006) have pointed out,
no version of the rational imitation model could explain the later findings of
Kir�aly, Csibra, & Gergely (2012; Kir�aly, Egyed, & Gergely, 2012; Kir�aly
et al. 2004) showing that only when the head-touch actions are demon-
strated by a communicative agent addressing the infants from a second-
person perspective by ostensive referential gestures did infants selectively
imitate the head action more in the hands-free than in the hands-occupied
context. In fact, when infants observed a noncommunicative agent perform
the head-touch actions in the hands-free condition, they tended not to
reproduce the head action at all showing significantly less head-touch
reenactment than in the corresponding hands-free context of the commu-
nicative demonstration condition.2 Other studies also found that the pres-
ence of social communicative demonstration context exerts a powerful
modulating effect on imitative reenactment inducing selective imitation in
ostensive contexts with much reduced imitation of the same actions
observed in third-person noncommunicative contexts (cf. Brugger,
Lariviere, Mumme, & Bushnell, 2007; Kir�aly, 2009; Nielsen, 2006;
Southgate, Chevallier, & Csibra, 2009).

Following Gergely and Csibra (2005, 2006) and Kir�aly, Csibra, &
Gergely (2012; Kir�aly, Egyed, & Gergely, 2012; Kir�aly et al., 2004), we
therefore suggest that the mistaken assumption made by advocates of the
rational imitation model is that even when they are provided with ostensive
cues, infants interpret the agent’s head action as an instrumental action to be
performed in accordance with the principle of practical rationality. If
addressed by ostensive signals, infants do not stand to the agent’s head action
as third-personal observers of an instrumental action. Instead, the reception
of ostensive cues automatically causes the infants to assume that the agent is
performing a communicative action, and they interpret the agent’s action
demonstration from an addressee’s second-personal perspective. As a result,
they expect the communicative agent to demonstrate for them something

2 This finding has recently been replicated using a modified procedure by Kir�aly, Egyed, &
Gergely (2012), in response to a potential methodological criticism by Paulus et al. (2011).
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novel and relevant to be reproduced, in accordance with the principle of
relevance.

Following her production of ostensive cues, in the hands-occupied
context, the model first demonstrated to the infants that her hands were
occupied with holding the blanket covering her shoulders when she pro-
ceeded to perform the odd head action to illuminate the touch-sensitive lamp
in front of her.What the infants therefore learnt from themodel’s head action
was that the unfamiliar artifact on the table is a lamp that can be operated by
contact and that they could (and ought to) turn on the lamp by making
contact with it using an instrumental action appropriate for the purpose. But
in the hands-free context, after having tied a knot on the blanket, the
demonstrator conspicuously placed her now free hands at rest next to the
touch-lamp calling the infants’ attention to the relevance of the fact that her
hands are now available for alternative instrumental use. What the infants
therefore learnt from the model’s head action was that they could (and ought
to) turn on the light boxby applying their head, instead of their hands. In brief,
infants apparently interpreted the agent’s ostensive signals as cues indicating
a pedagogical context and so they learnt to perform the odd head action,
thereby acquiring a deferential belief about the normative manner or social
expectation as to how one “ought to” operate the touch lamp. This finding
further suggests that the process whereby infants learnt to perform the odd
head action was not based on the assumption that this action was the most
efficient causal alternative to bring about the effect. Instead, they may have
encoded the demonstrated head action as socially relevant shared knowledge
about a normatively expected way of executing the skill.

4. ENDURING RELEVANCE AND RATIONALITY

Since relevance is a property of a communicative action, it must be
recognized as such by the recipient of the communication to whom it is
ostensively addressed (i.e. from a second-person perspective). Practical
rationality is a property of an agent’s decision to perform a particular
instrumental action to achieve her episodic goal, in the most efficient
manner available. This property is recognized by the interpreter observing
the instrumental action from a third-person perspective inducing the
expectation that the action chosen by the agent will be the most efficient
one to enable her to fulfill her desire in the light of her beliefs. An agent’s
belief is taken to be theoretically rational when its content stands in
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deductive or inductive relations to the contents of other accepted beliefs,
which warrant its acceptance. The warrant underlying the theoretical
rationality of beliefs can also be computed from a third-person perspective.
Inductive learning is the process whereby humans in general and human
children in particular form new beliefs and update their older beliefs. In what
follows, we shall examine novel evidence showing how an addressee’s
presumption of the relevance of an agent’s communicative action can
considerably support inductive learning in human infancy.

4.1. The Puzzle of Deictic Reference to Kinds
While experiments reviewed in Section 3.1 show that preverbal human
infants are able to disambiguate the intended referents of deictic pointing in
the episodic context of joint actions, further experiments indicate that the
reception of ostensive signals can also prepare preverbal human infants to
receive nonepisodic information about the referent of an agent’s communi-
cative action. The study by Egyed et al. (2012) on preference attribution
discussed at the end of Section 3.1 above provided a first example of this
phenomenon (cf. Gergely et al., 2007). Here, we shall review further recent
studies showing that when ostensively cued in an appropriate nonfamiliar
context, infants can interpret an agent’s deictic referential action as intended
to refer to a kind, not merely an individual. Since deictic reference per-
formed by pointing by its very nature individuates its referent by high-
lighting its spatial position (which is a transient and episodic property of
particular objects), this raises the puzzle of deictic reference to kinds.

In fact, the evidence suggests that the reception of ostensive signals can
trigger in infants two broad kinds of expectation about an agent’s subsequent
nonverbal communicative action. In the context of a joint (cooperative or
competitive) action, in which agents have a shared episodic goal and share
common knowledge about a restricted set of familiar objects and the
surrounding situational constraints, infants have been shown to expect
a communicative agent to convey relevant episodic information (Tomasello,
2008). In such contexts, the reception of ostensive signals generates an
expectation of local relevance: infants’ expectation of local relevance enables
them to determine the intended referent of the communicator’s deictic
referential act required for fulfilling the shared episodic goal. As the
discussion of imitative learning showed, however, lacking the context of
a shared episodic goal and a set of familiar objects, however, the reception of
ostensive signals triggers a presumption of enduring relevance. As we shall
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now argue, when ostensively cued in the presence of novel unfamiliar
objects, infants expect to be taught relevant nonepisodic information about
kinds. They expect the communicator’s referential action to apply to a kind
(not an object) and her subsequent demonstration to display a nonepisodic
(or enduring) property of the kind.

In a study by Yoon, Johnson, and Csibra (2008) about change detection
in a communicative or a noncommunicative context, 9-month olds saw an
object which was either the target of an agent’s instrumental (noncom-
municative) reaching action or was demonstrated by the agent’s commu-
nicative act using referential pointing ostensively addressed to the infant.
Then a screen came down to briefly occlude the object which either
changed it’s spatial position or its visual features before being revealed to the
infant again. Infants looked longer at a change of the object’s location than at
a change of the object’s visual features in the noncommunicative instru-
mental action condition but they showed the opposite looking pattern in the
communicative action condition. Clearly, while a target’s temporary loca-
tion is relevant to predicting and explaining an agent’s instrumental action
directed to it, the visual features of the object highlighted by the ostensive
referential pointing gesture are more likely to be nonepisodic properties
relevant for reidentifying it under new circumstances, learning about its kind
and classifying it under a sortal concept.

Years ago, Piaget (1954) reported the classical A-not-B perseveration error
phenomenon whereby infants between 8 and 12 months are engaged in an
episodic hide-and-search game in which an adult repeatedly hides a toy
under one (A) of two opaque containers (A and B) in full view of the infant.
After each hiding event, the infant is allowed to retrieve the object. During
test trials where the demonstrator places the object repeatedly under
container B, infants continue to perseveratively search for it under container
A where it had been previously hidden. Top�al, Gergely, Mikl�osi,
ErdThegyi, and Csibra (2008) compared three conditions. In the first
communicative condition, 10-month olds received ostensive signals before
and while the adult played the hide-and-search game. In the second
noncommunicative condition, the agent presented the hiding actions
without any ostensive signals directed to the infant. In the third nonsocial
condition, the agent was hidden behind a curtain while her hands were
baiting the containers, and therefore, she was not visible to the infants at all.
Top�al et al. (2008) report that 86% of the infants committed the A-not-B
perseverative error in the communicative condition (replicating previous
findings), but this error rate sharply dropped in the noncommunicative and
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the nonsocial conditions. Top�al et al. (2008) argue that when they fall under
the spell of ostensive–communicative signals, 10-month olds are fooled into
misinterpreting the episodic hide-and-search game as being
a communicative teaching demonstration about some nonepisodic
propertydexemplified by the manifested actiondthat relates the toy and
one of a pair of containers spatially individuated by the demonstrator’s
deictic referential actions. In sum, while hiding events in the standard A-
not-B task can be (and has been) interpreted as conveying episodic infor-
mation about the referent’s current location (“the target object is now under
container A”), these results suggest that due to the presence of ostensive
signals, infants interpreted them as communicative actions manifesting
relevant information for them to acquire about some generalizable
normative property of the referent kind (e.g. “Container A is where this
(kind of) object belongs to/should be placed in/should be looked for”, see
also Top�al, Gergely, ErdThegyi, Csibra, & Mikl�osi, 2009).

While the evidence reviewed so far indicates that the presence of
ostensive cues generates referential expectations in preverbal human infants,
further evidence shows that ostensive signals also cause infants to expect
a communicative agent’s display of an object to refer to a kind. Fut�o, Tégl�as,
Csibra, and Gergely (2010) exploited the object-individuation paradigm by
Xu and Carey (1996) to investigate the ability of 10-month olds to represent
objects in terms of their kinds. After infants were familiarized to seeing two
distinct objects (e.g. a truck and a teddy bear) emerge one at a time from
behind a screen and never simultaneously, the screen was removed, and
infants either saw the two objects or only one. Xu and Carey (1996)
reported that while 12-month olds looked longer when they saw only one
object, 10-month olds looked equally at the two events. In other words, 10-
month olds did not yet rely on feature-based information to individuate
objects in this task. Further evidence showed that when each of the two
objects were named by one of two distinct verbal labels when separately
visible, even 9-month olds looked longer at the single object event than at
the two objects event (Xu, 2002, 2005, 2007).

The goal of the three experiments by Fut�o et al. (2010)was to test whether
communicative ostensive signals could play the same role as verbal labeling in
enabling 10-month olds to rely on property information in an object-indi-
viduation task. In the first experiment, the selected objects were two novel
artifacts, one with a handle and the other with a dial, and the relevant
properties to be displayed by the agent’s nonverbal communicative actions
were kind-relevant functional properties. In the communicative function
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demonstration condition, before receiving two familiarization trials, 10-
month olds were first ostensively greeted by infant-directed speech (while the
artifacts were still hidden behind the screen). During the familiarization trials,
the infants saw the agent, which was a human hand, separately display each
artifact on either one or the other side of the screen and perform a different
function demonstration on each of them: the hand pulled the handle on one
artifact, which produced flashes of light as a result, or turned the dial on the
other artifact, which produced a melodic sound effect. Finally, the hand
pulled back each of the objects behind the screen. After two such familiar-
ization trials, the infants received two test trials: while the first was identical to
the familiarization trials, during the second, the hand removed the screen and
revealed either both of the objects or only one. Infants looked reliably longer
when only one object was revealed rather than two.

In a second experiment, Fut�o et al., (2010) removed one of two
parameters: in the non-ostensive condition, infants heard a synthesized
nonspeech sound transform of the original ostensive greeting in infant-
directed speech before the familiarization trials. In the no-intervention
condition, the hand that had pulled out the objects from behind the screen
withdrew from sight without performing the function demonstration on
them, and infants instead saw either the handle or the dial move by itself
while the object was simultaneously emitting either light or sound. Infants
looked equally long at the one-object and at the two-object events in the
test trials in both the non-ostensive and the no-intervention conditions.

In a third experiment, Fut�o et al., (2010) reproduced the familiarization
and test trials of the first experiment (with ostensive greeting and manual
intervention present). However, instead of using two distinct novel artifacts,
the very same single artifact was presented on each side, which, however, had
two instead of just onemanipulandaprotruding from it (a handle and a dial). So
the two different function demonstrations by the hand producing either the
light or the sound effect were demonstrated on the same artifact in alternation,
at either side of the screen. Infants looked longer in the test trialswhen they saw
the same single object (with both the dial and the handle) than when they saw
two distinct novel objects (neither of which they had seen during familiar-
ization), one with only a handle and the other with only a dial on it.

In the first experiment, infants took the communicative agent to be
referring to a kind of artifact and they interpreted the agent’s subsequent
manual demonstration of the function of the object to display a generic
(nonepisodic) functional property of the kind in question. (This is the puzzle
of deictic reference to kinds.) They must have further assumed that two
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distinct functional properties such as producing a light versus a sound upon
manipulation could not serve at the same time as kind-defining properties of
a single kind of artifact. As a result, they looked longer when they saw only
one object rather than two in the test trials. In other words, if preceded by
ostensive cues, then an agent’s referential action and communicative
demonstration were interpreted by the 10-month olds as manifesting kind-
specifying functional properties leading them to infer the presence of two
different artifact kinds that the referent objects must have belonged to.

In the second experiment, lack of ostensive cues failed to trigger the
expectation that the agent’s deictic demonstrative actions would make
reference to kinds rather than referring to an individual object. So even
though the hand demonstrated two different actions resulting in alternative
effects on the two objects, infants did not interpret these demonstrations as
referring to two separate artifact kinds. As a result, they looked equally long
when seeing one versus two objects present behind the screen during the
test. In the no-manual intervention condition, the handle and the dial on the
artifacts were shown to move on their own simultaneously producing light
versus sound. Here, infants could not interpret these contingent behaviors as
functional properties, and so in spite of the preceding ostensive signals, they
could not make sense of the agent’s referential action as referring to a kind of
artifact, in the absence of a subsequent manual action–demonstration that
could have identified the predicated artifact function.

Furthermore, the third experiment suggests that the infants were so
strongly cued toward interpreting the agent’s communicative action as
referring to a kind that when the agent demonstrated that a single artifact
could produce both light and a sound, they were fooled into assuming that
only two distinct kinds could exhibit two distinct functional properties. This
is shown by the fact that they looked longer when seeing during test the
single object that they had seen during the familiarization events than when
seeing two novel objects whose features only partially matched those of the
one seen during familiarization.

Assuming that infants are able to represent the content of a communi-
cative intention (as we argued in Section 3.1 that they are), then they should
expect the nonverbal action of a communicative agent to be relevant.
Furthermore, what the above findings suggest is that, in the presence of
ostensive signals, an agent’s referential action and demonstration upon
a novel object and/or property cue infants’ expectation of relevance: infants
expect the information conveyed by the communicative agent to be about
enduring properties of an artifact kind. Natural pedagogy is the name given by
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Csibra and Gergely (2009) to the social learning mechanism enabling infants
to acquire kind-wide generalizations on the basis of their interpretation of
the ostensive nonverbal referential actions and demonstrations of commu-
nicative agents. In the presence of ostensive signals, an agent’s referential
action and demonstration are interpreted as displaying the property of a kind
(i.e. as teaching a kind-wide generalization).

Clearly, preverbal human infants have no means at their disposal for
assessing the trustworthiness of their informants. Consequently, general
deferential beliefs about kinds formed by preverbal human infants can only be
based on blindly trusting their informants. New evidence suggests both that
natural pedagogy enables preverbal human infants to acquire generalizations
about kinds of artifacts and also that the essentialist bias documented in young
children’s concepts of natural kinds extends to their concepts of artifact kinds.

4.2. The Scope of Psychological Essentialism in Infancy
Essentialism is the idea that entities of various kinds have essential causal
properties which are not directly observable but are responsible for the
observable features of the entities that bear them. Psychological essentialism is
the view accepted by many psychologists that essentialism underlies human
children’s conceptual development in various cognitive domains. The essential
property is construed as a “causal placeholder” (Gopnik&Nazzi, 2003).While
developmental psychologists have adduced much evidence for psychological
essentialism in early childhood with respect to physical, chemical, and espe-
cially biological kinds (Gelman, 2003), it has been also argued that naive
essentialism is likely to be domain specific being restricted to young children’s
natural kind concepts, and that it initially does not apply to their understanding
of artifacts (e. g., Brandone & Gelman, 2009). But as we shall first argue in this
section, very recent evidence suggests that preverbal infants are prone to
interpret nonverbal referential actions in accordance with psychological
essentialist assumptions about artifact kinds as well (Fut�o et al., 2010).

The findings by Fut�o et al., (2010) strongly suggest that preverbal infants
can learn generalizations about artifact kinds from a sequence of nonverbal
actions performed by a communicative agent. As philosophers and
psychologists have emphasized, to categorize objects into kinds is to assume
that they share some common unknown unobservable underlying proper-
ties that cause them to have superficial observable properties that can be
perceptually detected. As a result, one should not expect the truth of
a generalization about some property of a kind to be easily dismissed by
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negative evidence based on the superficial observable properties of objects
falling under the relevant kind. This is exactly what a recent experiment
with older children shows.

In a study by Butler and Markman (2012), 4-year olds were presented
with 11 wooden blocks and taught their name, i.e. ‘blicket’. Only 1 out of
11 blickets had a (nonvisible) magnetic tape on one end. Then the children
were shown the novel property of the magnetic blicket: by applying the
blicket with magnetic tape to paper clips, the experimenter picked up
the paper clips, in three distinct conditions. In the pedagogical condition, the
children were informed that they would be taught something novel and
interesting before the magnetic property of the blicket was demonstrated. In
the accidental condition, the experimenter accidentally dropped the
magnetic blicket onto the paper clips. In the intentional condition, the
experimenter deliberately placed the magnetic blicket onto the paper clips
without, however, ostensively addressing the infants. In all three conditions,
after her demonstration, the experimenter placed all 11 blickets on the table
and encouraged the children to play with them. Butler and Markman (2012)
found that children’s persistence in exploring the magnetic property of
blickets in the face of mounting negative evidence (that they themselves
generated as they were trying out the rest of the non-magnetic blickets in
front of them) was remarkably stronger in the pedagogical than in either the
accidental or the intentional condition.

Arguably, this study shows that in the pedagogical condition (and only in
this condition), children took the generalization about the magnetic prop-
erty of blickets to have generic content, i.e. they took the demonstrated
magnetic property of blickets to be a property of a kind of objects. If
resistance to counterevidence is taken as a signature of the generic content of
kind-wide generalizations, then one may interpret 10-month olds’ persev-
eration in the A-not-B task investigated by Top�al et al. (2008, 2009) as
providing such evidence. In the ostensive–communicative condition of that
study, the high rate of erroneous perseverative search under the (now
empty) container A during the B-hiding trials did not decrease across the
three B trials even though these provided clear cases of counterevidence.
Infants may have interpreted the A-hiding demonstration as displaying
a relevant property of the kind of action executed (placing the toys into
container A) and thereby carrying social normative implications, which were
violated but not modified by the B-hiding events. This signature of kind-
wide generalizations seems also displayed by 14-month olds’ selective
imitative learning of novel means as demonstrated by Gergely et al. (2002).
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In response to the ostensively demonstrated model’s head action, the infants’
strong inclination to reenact this opaque, odd, and apparently nonrational
means action (in the hands-free context) was quite uninhibited by the
availability of the negative evidence, which infants spontaneously produced
by concomitantly performing hand actions that successfully turned the light
box on in a more efficient way.

Leslie (2007) has argued that generics in natural languages (“birds fly”),
which contain no explicitly encoded quantifiers, have peculiar semantic
properties that make them strongly resistant to counterevidence and
furthermore that humans are biased toward making kind-wide generaliza-
tions with such a peculiar generic content. Arguably, the causal essentialist
construal of kinds can provide an explanation for why generalizations about
kinds should not be easily dismissed by putative negative evidence based on
the observable features of instances of kinds. In the case of natural kinds, for
example, according to biological essentialism, it is in the biological nature of
tigers to be striped, a tiger that fails to be striped is a defective tiger, but it is
not a counterexample to the essentialist claim that being striped is caused by
some unknown essential biological property of tigers (cf. Atran, 1990).
While being striped (which is observable) is taken to be caused by some
biological unobservable essential property of tigers, it is not itself an essential
biological property of tigers. Conversely, being deprived of observable
stripes is not counterevidence to the presumed presence of an underlying
essential biological property that causes tigers to be striped in normal
conditions.

What the evidence previously reviewed shows is that young children also
make essentialist assumptions about artifact and social kinds. Furthermore, it
also shows that preverbal human infants can learn generalizations about
artifact and social kinds from the nonverbal actions of communicative
agents. Nonverbal demonstrations seem well suited for conveying generic
(nonepisodic) information about artifact kinds as well as some social kinds.
For example, in the experiments by Fut�o et al., (2010), the two-step
communicative action involved a pair of referential act and a demonstration
whose function was to display the property predicated of the ostensively
referred kind of artifact (e.g. produce either a melodic sound or a flash of
light). Arguably, the essentialist construal of artifact and social kinds by
preverbal human infants is promoted by their irresistible tendency to
epistemically trust their communicative informants. Because they accept the
information conveyed by communicative agents on trust, infants might
assume not merely that the observable features of man-made tools and
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human actions and practices demonstrated to them are caused by some deep
underlying essential properties, but that they must be so caused. Why should
trustworthy informants take the trouble to display the properties of artifact
and/or social kinds by means of their nonverbal communicative actions for
infants’ benefit if they did not thereby convey either the functional prop-
erties of normal (i.e. non-defective) artifacts or the norms with which the
actions of human agents ought to comply? Furthermore, the ascription of
functions to both natural and artifact kinds involves or carries normality
assumptions. Just as it is the function of a normal mammalian heart to pump
blood, it is also the function of a normal chair to afford the possibility of
sitting on it. A mammalian heart that fails to pump blood is a defective heart
whose biological function is to pump blood. Even if poorly designed (or
damaged), a chair has the (intended) function to enable humans to sit on it.3

As emphasized by Csibra and Gergely (2006), human infants are borne
into a world populated with man-made artefacts whose causal and functional
properties as well as appropriate manner of use are epistemically larely
opaque to them. This epistemic opacity may encourage infants to assume, in
accordance with the essentialist bias, that the surface-observable properties of
man-made tools result from their underlying essential properties (e.g. their
intended function). This could provide a further reason for why the
essentialist bias in young human children extends to artifact kinds.

Finally, normality assumptions are also carried by ascriptions of func-
tional properties to social kinds: if an individual fails to comply with social
norms (e.g. take his hat off his head as he walks into a church), we take the
individual’s behavior to be defective (or the individual to defect from the
relevant norms), not to be a counterexample to the veracity of the social
norms. Arguably, the findings by Gergely et al. (2002) on imitative learning
and by Top�al et al. (2008, 2009) on the A-not-B task show how the
reception of ostensive signals cues human infants into interpreting an
episodic demonstration as a teaching session from which they learn a social
norm about either how to act in the presence of a novel artifact or which of
a pair of containers is supposed to contain a toy.

3 Millikan (1984, 1993) and Neander (1995) have stressed the pervasiveness of normality
assumptions in the ascription of functional properties to biological kinds and the non-
prescriptive normative implications of the ascription of functional properties to biological
kinds. Of course, this unified view of the ascription of functional properties (to natural
and artifact kinds) builds on a scientific Darwinian view of biological functions, which
should not be imputed to preverbal human infants.
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4.3. Natural Pedagogy and Bayesian Inductive Learning
In this final section, we turn to recent probabilistic Bayesian computational
models of rational causal inductive learning that emphasize human infants’
remarkable sensitivity to statistical patterns of evidence as the primary basis for
constructing coherent, abstract, and causal representations of the world in
different knowledge domains. Some recent Bayesian computational models
of statistical inductive inferences in young children provide clear evidence for
the power of ostensive pedagogical demonstrations in inducing, informing,
and constraining the scope of inductive inferential generalizations drawn by
preschoolers. For example, Bonawitz et al. (2011) have argued that “children
are more likely both to learn demonstrated material and to generalize it to
novel contexts in teaching than in non-teaching situations” (p. 326), in
accordance with the natural pedagogy approach. Buchsbaum, Gopnik,
Griffiths, and Shafto (2011) have also showed that a demonstrator’s peda-
gogical stance has a significant effect on children’s decisions whether to
imitate part or all action sequences demonstrated to them.

Several recent studies, however, provide suggestive evidence that even
much younger infants seem to possess sensitivity to purely statistical infor-
mation that entails random versus selective sampling by an agent and that
they can rely on such statistical information to spontaneously constrain the
kind of inferential generalizations they draw from the observed evidence (e.g.
Gweon, Tenenbaum, & Schulz, 2010; Ma & Xu, 2011; Kushnir, Xu, &
Wellman, 2010). For example, Gweon et al. (2010) argued that different
inferences are licensed if samples are drawn randomly from the whole
population (weak sampling, i.e. an agent chooses items at random from the
population, independent of their properties) than if they are drawn selectively
only from the property’s extension (strong sampling, i.e. the agent samples
items selectively, depending on their relevant properties). As they point out,
“weak sampling provides a less powerful constraint on induction (as both
positive and negative evidence will be necessary to constrain inferences
generalizing to subpopulations),” while “even a few samples of positive
evidence . can constrain inductive generalizations to subpopulations or
kinds” (p. 9066) under the assumption of strong sampling by the agent.

In a series of elegant studies, Gweon et al. (2010) explored the hypothesis
that there may be “early constraints on what infants assume about rational
agents’ sampling processes” (p. 9066). In one study, 15-month olds watched
as an adult glanced into a transparent box in front of them (containing
a population of blue and yellow balls), pulled out a blue ball, squeezed it so
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that it squeaked, and then set it on the table. The experimenter repeated this
until she pulled out the sample of blue balls (three, two, or just one) tested in
the given conditions. Then, after a brief pause, she went on to pull out
a yellow ball and put it in front of the child saying, “Here you go, you can go
ahead and play.” Across different (random vs. selective) sampling conditions,
infants saw exactly the same sequence of demonstrations while the distri-
bution of the population from which the agent sampled the balls was varied
in a way that was transparent to the infants. For example, in a random
sampling condition, a sequence of three blue balls were sampled from
a transparent box which (visibly to the infant) contained a majority (75%) of
blue and only a minority (25%) of yellow balls, while in the strong sampling
condition the three blue balls were drawn identically but this time from
a transparent box that contained only a minority (25%) of blue balls and 75%
of yellow balls. The question of interest was the degree to which infants
would differentially generalize the object property (makes sound if
squeezed) demonstrated on the three sampled blue balls to the yellow ball as
a function of their evaluation of the difference between the sampling
conditions. The results showed that while infants constrained their gener-
alization of the squeaking property to the blue balls in the strong sampling
condition (with only 33% of them squeezing the yellow ball), they did not
do so in the random sampling condition (where 80% tried to squeeze the
yellow ball). Based on such results, the authors conclude that “in the absence
of behavioral cues to the sampling process, infants make inferences consistent
with the use of strong sampling.” Thus, they argue that “infants make
accurate generalizations from sparse data, in part because their inferences are
sensitive to how the sample of evidence reflects the population” (p. 9071).

Other recent studies based on the Bayesian approach have explored the
use of statistical evidence in rational inferences about the social world (see
Ma & Xu, 2011; Kushnir et al., 2010). For example, Ma & Xu (2011) raised
the intriguing question “whether young children can use statistical patterns
in the choices that other people make to infer the subjective nature of
mental states” (p. 410). They point out that “as a source of motivation that
enables an agent’s choice of one option over another, preferences are
subjective and often person-specificddifferent people can have different
attitudes toward the same entity” (p. 403). In their study, they explored,
therefore, whether toddlers can make use of purely statistical sampling
evidence as a basis for ascribing to others person-specific subjective prefer-
ences different from their own. First, in a baseline condition, the experi-
menter presented 2-year olds and 16-month olds with two bowls each
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containing one of two kinds of objects (either boring or interesting toys
only). The infants were then asked: “Which one do you like to play with?
Just choose one!” The toddlers’ choices were taken to indicate their own
subjective preference (in fact, most expressed preference for the interesting
toys). Second, to assess the infants’ prior beliefs about the experimenter’s
subjective preference, the adult placed one hand, palm facing up, between
the two bowls and asked the child: “I like to have a toy to play with. Can I
have the one I like?” In general, infants relied on their own preference when
judging the experimenter’s likely subjective preference: they tended to give
her the same kind of (interesting) toy that they themselves had shown
a preference for. Third, toddlers saw the adult sample six boring objects in
three conditions. In the nonrandom sampling condition, the adult drew six
boring objects from a transparent jar containing only 13% boring objects and
87% interesting ones. In one of the random sampling condition (without
alternative), the adult drew six boring objects again this time, however, from
a transparent jar containing 100% boring objects. In the random sampling
condition with an alternative, the adult drew the six boring objects from
a transparent jar containing 88% boring objects and only 12% interesting
ones. This was followed by a test phase to examine whether the sampling
information would affect children’s judgment of the experimenter’s pref-
erence. Immediately after the sampling event, the experimenter asked
children about her own subjective preference a second time: “I like to have
a toy to play with. Can I have the one I like?” The toddlers’ choice of toy to
offer from the two bowls (boring or interesting toy) was interpreted as
reflecting the person-specific subjective preference that the infant ascribed to
the adult (as a function of her previously observed sampling behavior). Ma
and Xu (2011) report that 2-year olds used the nonrandom sampling as a cue
to the agent’s current subjective preference (i.e. for the boring objects),
while in both versions of the random sampling condition, they continued to
rely on their own preference as the basis for judging the agent’s likely
preference. The authors report a weaker but similar effect in 16-month olds
as well. Based on these results, they conclude “that by age 2 children
apprehend the subjectivity of preferences based on sampling evidence alone,
in the absence of social-pragmatic cues” (p. 410).

In sum, the studies reviewed above provide intriguing new evidence that
when learning from the observed actions of intentional agents human infants
show sensitivity to statistical information that is compatible with the
assumption of strong sampling by the agent and can rely on such information
to induce fast learning as well as to constrain the referential scope of
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projected inductive generalizations to kinds. The evidence also indicates that
the assumption of strong sampling is applied to drive rational inferential
learning about different aspects of the physical and social world already by
15- and 20-month-old infant observers (in contrast to conditions where the
same evidence is interpreted as involving random sampling).

The core theoretical assumption behind the Bayesian research program
of rational inductive learning is the proposal that the early constraints on
what infants assume about agents’ sampling processes reflect a central
property of rational instrumental agency. As Gweon et al. (2010) put it,
“considerable work suggests that infants make assumptions about rational
agents with respect to intentional goal-directed actions (Gergely & Csibra,
2003; Gergely et al., 1995; Woodward, 1998)” (p. 9070). While they further
argue that “it would be very interesting if the assumption that agents were
likely to engage in selective sampling were part of this repertoire” (p. 9070),
they refer to the body of evidence (reviewed in Section 2) showing that
infants expect agents of instrumental actions to choose the most efficient
means action available to them to achieve their goal, in accordance with the
principle of practical rationality. Is this core assumption correct?

We doubt it on two grounds. On the one hand, we have argued that
practical rationality is restricted to the third-person interpretation of the
instrumental actions of goal-directed agents and to their expectable choice of
efficient means actions to bring about their episodic goals in the world. On
the other hand, much evidence reviewed above in this paper shows that
infants learn to make generalizations about social and artifact kinds from
a second-person perspective from communicative actions addressed to them,
while they fail to do so when they observe from a third-person perspective
the very same actions performed by a noncommunicative agent. For
example, in studies on selective imitative learning of novel means actions,
14-month olds were provided with the same statistical evidence when they
observed an adult perform three times in a row an odd and unfamiliar “head
action” to contact and illuminate a novel touch-sensitive lamp in the hands-
free condition either by a communicative agent ostensively addressing them
or by a noncommunicative agent observed from a third-person perspective.
The infants only learnt to perform the odd head action in the former but not
in the latter condition (Kir�aly, Csibra & Gergely, 2012). In the object-
individuation study of Fut�o et al., (2010), 10-month olds were provided
with the same statistical evidence in either a communicative or a noncom-
municative action–demonstration condition involving six repeated function
demonstrations of each of two novel functions on two different artifacts,
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respectively. While the demonstrations provided sufficient statistical infor-
mation of positive evidence to support inductive generalization of the
functional property to the artifact kind, infants showed evidence of kind
assignment only in the communicative ostensive demonstration context. On
this basis, we surmise that infants take strong sampling as part of commu-
nicative, not instrumental, agency. We further think that both the studies of
Gweon et al. (2010) and Ma and Xu (2011) corroborate our diagnosis.

For instance, in the study by Gweon et al. (2010), after the experimenter
ostensively addressed the infant, she established joint referential attention, by
removing the cloth covering the transparent box “and drew the child’s
attention to its contents by pointing to the window” (p. 9071), thereby
making the statistical composition of the population of balls shared and
relevant contextual background knowledge. In this communicative context,
the infants could interpret the agent’s subsequent communicative action–
demonstrations as instances of either weak or selective sampling. In exper-
iments 1–3, infants were therefore in a position to interpret the agent’s
action–demonstrations as instances of strong sampling. By contrast, in
experiment 4, which tested the infants’ sensitivity to random sampling, the
agent first ostensively called the infants’ attention to the fact that the
sampling method she applied to draw the balls was random (i.e. in violation
of the assumption of strong sampling): “rather than pulling the balls out, the
experimenter shook the box upside down to let the balls fall out. Then she
told the child, ‘The next one is going to be yours’.” (p. 9071).

The same is true of the procedure applied in the study by Ma and Xu
(2011) where before sampling the six boring objects in each condition, the
experimenter “first brought out a jar and directed children’s attention to the
objects inside (e.g. ‘Look! I have a big jar. There are two kinds of things in it
[Boring 13% condition]/there is only one kind of things in it [Boring 100%
condition]. I am going to get some!’)” (p. 405). In fact, following the
sampling demonstrations (and before the test phase), the experimenter
communicatively addressed the infant once again to make sure that the
relevant contextual information about the population distribution from
which the sampling evidence had been drawn was shared knowledge: “At
the end of the sampling event, she directed children’s attention to both the
population and the sample, “Look! This many (holding the jar), and I got six
of this one (holding the display container)” (p. 405). Furthermore, given the
fact that the statistical evidence presented by the preferential sampling
demonstrations in the study by Ma and Xu (2011) were preceded by strong
ostensive–communicative cues directed to the toddlers, it seems entirely
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possible that what their results demonstrate is not merely that toddlers learnt
to ascribe to others preferences different from their own on the basis of one
individual’s strong sampling behavior but that they would even be willing to
generalize the other’s preference to different agents as well (as is the case in
study by Egyed et al., 2012).

5. CONCLUDING REMARKS

As the evidence reviewed in Section 2 shows, preverbal human infants
are surprisingly able to represent the subjective motivations and the episodic
contents of the epistemic states of agents of instrumental actions from
a third-person perspective, in accordance with the principle of practical
rationality. As the evidence reviewed in Sections 3 and 4 shows, their unique
sensitivity to coded ostensive signals makes preverbal human infants
surprisingly able to detect the presence of agents’ communicative intentions
and to interpret nonverbal communicative actions from a second-person
perspective.

In Sections 3.2 and 3.3, we argued that in order to solve the puzzle of
imitative learning, it is necessary to give up the rational imitation model
according to which the model’s action is construed as an instrumental action
performed in accordance with the principle of practical rationality. Instead,
the model’s action should be construed as a communicative action whose
goal is to teach new and relevant knowledge performed in accordance with
the principle of relevance. This finding illustrates the separation between the
system underlying infants’ early reasoning about the psychological states of
instrumental agents and the system whereby they acquire novel and relevant
knowledge from communicative demonstrations when addressed by
ostensive signals.

In Section 3.1, we reviewed evidence showing that in the context of
joint actions where both agents have shared goals and share relevant
common knowledge about a restricted set of familiar objects, preverbal
human infants are able to disambiguate the intended referents of the
nonverbal deictic pointing actions of their communicative partners. By
contrast, in Section 4.1, we reviewed evidence showing that preverbal
human infants are also prone to acquire deferential (trust based) beliefs about
properties of artifact kinds from their interpretation of some of the referential
actions and demonstrative displays of nonverbal communicative agents. In
Section 4.2, we argued that such deferential beliefs about artifact kinds are
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formed in accordance with the principle of psychological essentialism. One
crucial issue for further research is to investigate in detail what makes infants
switch their expectation of relevance from episodic to nonepisodic infor-
mation and conversely. In Section 4.3, we examined a selective sample of
investigations about the ability of young children to make use of statistical
inferences and we have argued that these studies are consistent with the idea
that infants interpret strong sampling as part of a communicative action.
Further work is needed to better understand how natural pedagogy and
statistically based inductive learning combine in early infancy.
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Abstract

Rational models of human perception and cognition have allowed researchers new
ways to look at learning and the ability to make inferences from data. But how good are
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such models at accounting for developmental change? In this chapter, we address this
question in the domain of language development, focusing on the speed with which
developmental change takes place, and classifying different types of language devel-
opment as either fast or slow. From the pattern of fast and slow development observed,
we hypothesize that rational learning processes are generally well suited for handling
fast processes over small amounts of input data. In contrast, we suggest that associative
learning processes are generally better suited to slow development, in which learners
accumulate information about what is typical of their language over time. Finally,
although one system may be dominant for a particular component of language
learning, we speculate that both systems frequently interact, with the associative
system providing a source of emergent hypotheses to be evaluated by the rational
system and the rational system serving to highlight which aspects of the learner’s input
need to be processed in greater depth by the associative system.

1. INTRODUCTION

All theories of language development, indeed all theories of cognitive
development more generally, seek a balance between what knowledge
about the likely structure of the world needs to come with the learner (i.e.
must be innate) and the computational power of the learning mechanism
needed to encode and analyze the learner’s experiences. Until the last
decade, theories of language development were essentially of two sorts,
which we might view as having extreme values on the innate knowledge
and on the mechanistic complexity scales.

On the one hand, triggering accounts posit that linguistic structure is
innate, with some aspects of structure shared by all languages and other
aspects varying parametrically across languages (Chomsky, 1957; Chomsky
& Lasnik, 1993). This view assumes a very simple learning mechanism in
which the child can determine which of a set of parameterized linguistic
structures is valid for her language by encountering a single, specific input
example or trigger. A similar mechanism is thought to be a work in ducklings
and goslings that follow the first moving object they see after hatching
(Lorenz, 1935).

On the other hand, associative accounts, often instantiated in con-
nectionist network models (e.g. Rumelhart & McClelland, 1987) posit little
in the way of innate knowledge, except for separate encoding of informa-
tion arising from the different sensory systems. However, these accounts
assume that learners can store large amounts of information over which
a variety of statistical trends, relating any number of input dimensions, can be
induced. An example of a statistical trend might be that the majority of
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words in English begin with a stressed syllable (e.g. Cutler & Carter, 1987;
Jusczyk, Cutler, & Redanz, 1993).

In addition to differing in the amount of innate knowledge and
computational capacity they assume of learners, triggering and associationist
accounts differ as to the basis on which learners generalize from previously
encountered stimuli to new stimuli. Triggering accounts assume that
generalization occurs in an all-or-none fashion, via a model of the language
system, or grammar, whereas associationist accounts assume that generaliza-
tion occurs in a gradient fashion via a measure of similarity which is induced
from statistical patterns in the data. The two accounts are at opposite
extremes in terms of the explicitness of the representations they posit. While
triggering accounts take the mental representation of grammar to be a set of
discrete rules, associationist accounts reject the notion of an identifiable
representation of grammar, supposing that what appears to the linguist to be
a grammar is really just a collection of statistical relationships.

Both triggering and associationist accounts fail to comport with certain
aspects of language development data. We explore these failures in more
detail in the subsequent sections; however, we can briefly identify two types
of problems that undermine both approaches. The first concerns the nature of
generalization. Triggering accounts predict that once the learner encounters
the relevant data (the trigger) that indicates the correct setting for a particular
aspect of the child’s grammar, that aspect of the grammar should have been
learned. Furthermore, once a generalization is made, it should not be
changed. These predictions are contradicted by the fact that mature language
abilities develop over time with errors gradually decreasing (e.g. Elman, 2003;
Freudenthal, Pine, Aguado-Orea, & Gobet, 2007) and by data showing that
children flexibly change the generalizations they make (e.g. Gerken, 2010).
At the other extreme, associationist accounts predict that large quantities of
data should be required for generalization. In several cases, however, children
learn from just a few examples (one of the observations that motivated trig-
gering-style accounts in the first place, e.g. Gerken & Bollt, 2008).

The second class of problem concerns the nature of the input that is
required for generalization to take place. Several recent studies have found
that infants can learn patterns that are linguistically unnatural, which is at
odds with triggering (e.g. Cristi�a, Seidl, & Gerken, 2011; Gerken & Bollt,
2008). On the other hand, children appear to generalize very little from
input that contains many tokens from a single type, but given an equal
number of tokens overall distributed over several types, they generalize well
(Xu & Tenenbaum, 2007a). Connectionist accounts often make the
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incorrect prediction that repeated exposure to a single type will result in
overlearning of the properties of that one category and will swamp learning
about other categories that had taken place previously.

In recent years, a middle way, which at least partially addresses all these
problems, has emerged between the two extremes (e.g. Frank &Tenenbaum,
2011; Gerken &Dawson, in press; Perfors, Tenenbaum, &Regier, 2006; Xu,
2007). This middle way is rational statistical inference, which, like triggering
accounts, assumes that generalization fromold experiences to newones occurs
via a grammar.Unlike triggering, however, rational inference does not assume
that a highly constrained set of possible grammars needs to be innate. Rather,
a learner can select themost probable grammar, given a set of data, by asking for
each grammar under consideration: If the real grammar is Gn how likely is the
set of data that I have observed so far? Thus, like associationist approaches,
rational inference assumes that learners keep track of statistical patterns in their
input.However, once an appropriate hypothesis space is specified, the amount
of input data needed to converge on a probable grammar is considerably
smaller than in associationist accounts (e.g. Ng & Jordan, 2002).

The goal of this chapter is to ask how well rational statistical inference
can explain a set of language abilities for which we have some knowledge of
the developmental time course and of the nature of the input that is required
for development. The set we have selected appears in Table 4.1. Our plan is
to describe what is known about each ability, analyze how well it is
explained by rational inference, and where relevant, discuss what triggering
and associationist accounts have to say about the ability. To foreshadow, our
analysis will reveal that rational statistical inference performs well for most
developing language abilities. However, fast rational inference performs less
well for abilities that entail knowledge of the statistical distribution of forms
at various levels, with the distribution being largely governed by diachronic
forces on the language (e.g. which syllable onsets are most frequent, which
stress patterns are most frequent, etc.).

We will conclude that what is needed to account for a full theory of
language development is a model that involves both rational inference and
associationist elements, as well as two important kinds of interaction
between them. On the one hand, we suggest that the rational system might
use the representations generated by the associative system to structure and
constrain its space of hypotheses. At the same time, the data encountered by
the rational system may be judged as unlikely under any hypothesis currently
under consideration, which could serve as a signal that new hypotheses,
perhaps depending on new representations, are needed. This “surprise
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signal” could serve to induce greater activity in the associative system,
leading it to more readily form new connections and representations. This
interplay between surprise and the search for new explanations with the
potential to reduce surprise was discussed by the philosopher Charles Sanders
Peirce (1935). Conversely, statistical patterns which are explained away by
hypotheses currently entertained by the rational system, patterns which
might otherwise spur new associations, can be safely ignored by the asso-
ciative system, as they have little to offer in the way of new statistical
information. The process of statistical explaining away is an important
feature of rational inference (Dawson, 2011; Pearl, 1988).

1.1. A Few Words about the Set of Language Abilities
We Have Chosen
All the language abilities that we have chosen have been documented in
experiments with infants and young children to the age of approximately
4 years, with an emphasis on the earlier ages in the range. We have chosen
these earlier developing abilities for two reasons. First we characterize

Table 4.1 Types of linguistic abilities reviewed, speed of acquisition (see text),
and sample references

What is learned? Fast or slow? Sample studies

Which phonetic features are
distinctive in the native
language

Slow Werker and Tees (1984); Polka
and Werker (1994)

Typical sound patterns of
native language words

Slow Jusczyk et al. (1993); Jusczyk
et al. (1994)

Phonological rules Fast Gerken and Bollt (2008); Cristi�a
et al. (2011); Chambers et al.
(2003)

Ordering of adjacent words Fast Gervain et al. (2008; G�omez and
Gerken (1999); Marcus et al.
(1999)

Ordering of nonadjacent
words

Slow G�omez and Maye (2005);
Santelmann and Jusczyk
(1998)

Word meanings Fast Carey and Bartlett (1978); Xu
and Tenenbaum (2007a);
Medina et al. (2011)

Likely referent properties
involved in word meaning

Slow Smith et al. (2002)
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linguistic skills by how much time it takes to acquire them. Therefore, we
are most interested in abilities for which there is reasonable agreement about
the time course of learning, either because the studies involve learning in the
laboratory or because infants of different ages reliably show different abilities
with their native language.

Second, also because of our interest in establishing time course, we have
chosen abilities that have been explored using experimental techniques in
which learners do not need to follow instructions any more elaborate than
“show me the X” (where X is an actual or nonce word) or “what is this?”
(where “this” can be given a single word label). Most of the experiments do
not entail giving learners any instructions at all but rather depend on
behavioral measures of interest (mostly looking). Some of the experiments
focus on knowledge of the learners’ native language as measured by
behavioral techniques in the laboratory. Others entail exposing infants to
novel words or linguistic structures and testing what they were able to learn
about these stimuli in a brief laboratory visit.

The abilities represent a range of linguistic components, including
phonetics, phonology, syntax involving word order, and lexical semantics.
Most obviously missing are studies in which children are asked to interpret
or produce more complex syntax. The reason for this gap is largely that, in
our view, this is an area where there is considerable disagreement about
when children demonstrate knowledge of linguistic structure (e.g. Fisher,
2002; Tomasello, 2000; Tomasello & Abbot-Smith, 2002).

Finally, let us comment on the division of learning speed into the obvi-
ously too gross measure of “fast” versus “slow.”We chose these categories to
see if any pattern emerged if we used them. We will attempt to provide
a somewhat more nuanced discussion of learning speed under each ability
under consideration in turn.We have applied these labels using the following
(admittedly rough) criteria: If a linguistic ability can be shown to be acquired
in a laboratory visit, and there is evidence that learners of different ages
perform similarly, we assign the label “fast.” In contrast, if the ability is
differentially present in learners of different ages, we conclude that there is
a longer time course required for learning, and we assign the label “slow.”

2. RATIONAL VERSUS ASSOCIATIVE INFERENCE

Before turning to the developing linguistic abilities shown in Table
4.1, let us provide some background on rational and associative learning
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models and how they might interact. We use the term “rational statistical
inference” to describe model-based probabilistic inference, wherein each
member of a (possibly infinite) set of hypotheses about the structure of
language specifies how likely any particular pattern of data should be.
Linguistic input is used to determine how likely each hypothesis is a poste-
riori (we have Bayesian inference in mind here, though this is not the only
possible form of model-based probabilistic inference). In this way, rational
inference combines top-down and bottom-up information. In contrast, an
associative learning mechanism does not rely on structured representations
and instead tracks a wide variety of statistics, possibly allowing new structure
to emerge, which can then be leveraged in rational learning.

We suggest that, once a sufficiently constrained set of hypotheses is
formed, conclusions can be drawn rather quickly, without necessarily
requiring huge quantities of data. On the other hand, in less structured,
associative learning, associations and statistical trends may be present within
and between a wide variety of environmental sources. We discuss some
potential examples of each type of learning in the next section; first, we will
discuss some key features of the manifestations of rational and associative
learning that currently enjoy dominance in cognitive science: Bayesian
inference and connectionism, respectively.

2.1. The Fruits of Knowledge and Vice Versa
Consider a simple nonlinguistic example. Suppose you are stranded on an
uninhabited island, and you are looking for some tasty fruit to eat. After
some wandering, you come across a tree with some bright orange fruit. You
pick one and take a bite. It is sweet and juicy. What do you expect of the
next bite? It is possible part of the fruit is rotten, and the next bite will taste
terrible. With only one data point so far, you do not have much raw
statistical evidence to make generalizations. What will happen if the next
bite is delicious as well? Probably you will be more confident that the third
bite will be delicious than you were prior to taking the second bite.

Suppose you have finished your piece of fruit, but you still feel hungry.
Consider three options: (1) you could reach for another piece from the same
tree, (2) you could take a piece from a tree a few yards away with similar-
looking fruit, or (3) you could reach for the tree immediately next to the
original tree that bears some deep purple berries. Which options are most
likely to reproduce your previous delicious experiences? Likely your intu-
ition is that the chances of deliciousness are greatest in (1) and lowest in (3).
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Why is (1) better than (2)? An obvious answer is that the new experience
would share more features with the old ones. But why is (2) better than
(3)? After all, the purple berry tree is physically closer to the original tree, so
if deliciousness is related to location (perhaps the soil is especially nutrient
rich at that spot), you might expect that eating a purple berry from the
nearby tree would be better than eating an orange fruit from a tree
farther away.

Most of us would be fairly confident that the second bite from the
original piece of fruit will taste like the first, even though we can entertain
the possibility that only part of the fruit could be rotten. Similarly, almost no
one will doubt that the orange fruit from the far away tree is a better bet than
the purple berry from the nearby one, provided the former appears suffi-
ciently similar to be judged a member of the same type as the one already
eaten. As sophisticated, worldly intellectuals, we have biological knowledge
that tells us that there is usually little variability among parts of an individual
piece of fruit and that taste usually depends more on the type of fruit than the
location of the tree it came from. When we bring the full force of this
knowledge to bear, we can generalize confidently with very little data.

Imagine you did not have that fancy university education and thus were
completely ignorant about the ontology of fruit and fruit trees. Now the
second bite (as well as the third) would be more of an adventure. Later,
while you might still prefer option (1) to option (2), you would have a more
difficult time choosing between (2) and (3). You would need to gather more
data. If you had tried both and found that, indeed, the other orange fruit was
delicious, but that the purple berry was sour, then perhaps you would begin
to believe that appearance matters more than location. Even more so if you
tried another purple berry near the second orange-fruit tree, and it was also
sour. You still only have two data points from each type, and two from each
location, but if you come to the problem predisposed to attend to appear-
ance and location (as opposed to, say, whether it was 4:03 PM vs. 4:11 PM),
you do not need much data to begin to feel at least somewhat confident that
the former is an important predictor of flavor and the latter much less so.
You may even make an even more sophisticated leap and conclude that
various pieces of the orange fruit might share properties in addition to
tastiness as do various instances of the purple berries.

The learner who begins with a predisposition (whether from some innate
bias or from other previous experience) to treat appearance and location as
potentially informative, might entertain some vague notion that fruit is
divided into categories, with a vague prior distribution on tastiness,
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appearance, and location given category. The means and variances for each
dimension, along with the correlations between them, could then be
inferred from data. Data of the sort described above, in which two pieces of
tasty orange fruit and two sour purple berries were eaten, one of each from
each of two locations, would be likely if the orange fruit came from one
category and the purple fruit from another and unlikely if the fruit were
grouped by location. Moreover, the a posteriori correlation would be
relatively high between tastiness and appearance but low between tastiness
and location. In contrast, a classical connectionist network which incre-
mentally updates its weights could learn very little from four data points.
The structure of the rational learner’s representation constrains the learning
problem enough that (what turns out to be) the correct hypothesis (that the
orange fruit belong together) is already considerably better supported than
the alternatives.

2.2. Types and Tokens
A key aspect of the structure possessed by the rational model which
differentiates it from the associative learner is the partitioning of variability
into multiple hierarchical levels. Consider what the two systems would learn
as they continued to gather data from that first piece of orange fruit. After
one bite, neither system is very confident about what to expect on subse-
quent tastes. After the second bite, the rational system gets a big boost to its
confidence as it now has evidence of low variability in tastiness among bites
from the same piece of fruit. The associative system gets a boost as well, but it
is small. Over the next several bites, the rational system confirms its
impression that intra-fruit variability is low, but since it already expected this,
the returns diminish quickly. Moreover, since it separates intra- and inter-
fruit variability, it learns almost nothing beyond the first few bites that helps
it predict what the next piece of fruit will taste like as the relevant measure of
evidence for inferences about inter-fruit variability within a type is the
number of distinct fruit tokens of that type observed and not the total
number of observations. If the membership of the particular piece of fruit to
a type is in question initially, then the effective number of tokens observed
may be less than one. As such, additional observations can provide infor-
mation about inter-token/intratype variability by increasing that number
toward one; however, as membership becomes near-certain, no more
information which is relevant for generalization can be gained from
that piece.
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Contrast this behavior with that of the connectionist learner. As this
learner continues to take bites from that first orange fruit, it gets more and
more confident that not only this piece of fruit but also other things like it
(whether the similarity is in appearance, location, or any of a variety of other
features) will taste good. Without an ontology to carve its experience into
types and tokens, it will have an increasing tendency to predict that orange
objects taste good. Its estimate of the correlation between tastiness and
orangeness, as well as of the correlation between tastiness and location, keeps
rising, as it keeps receiving evidence which is consistent on all three
dimensions.

In the long run, as plentiful and diverse evidence is gathered, both
systems will make the correct inferences, but the rational system learns a lot
early (provided it represents the problem in a useful way) and then requires
new varieties of experience to continue learning, whereas the associative
system makes less commitment to the structure of the problem and learns
gradually and steadily from even repeated experience.

2.3. The Bias–Variance Trade-off
The trade-off between representational commitment and learning speed is
encountered in statistics and machine learning problems under the name of
the “bias–variance trade-off.” In a formal statistical problem, one looks for
an appropriate estimator of some latent quantity. Naturally, with finite data,
perfect estimation is impossible, and so every estimator comes with some
degree of error. Error arises from two sources. The bias of an estimator is the
extent to which it deviates on average from the true quantity (where the
average is taken over the true distribution of the data). The variance of the
estimator is the extent to which its value is sensitive to the particular data
encountered. When the variance is large but the bias is small, the error
associated with any given set of input tends to be large, but because errors
occur in different directions, the average value is close to truth.

As the amount of input increases, the variance of an estimator decreases.
Estimators for which the variance is low at a given sample size are called
efficient. Estimators in another desirable class (called consistent estimators) may
contain bias for any given amount of input, but the bias vanishes in the limit
of infinite data.

In the context of the present discussion, rational and associative learners
have opposing advantages: associative learning is consistent, but rational
learning is efficient. Rational learning is consistent as well when it is able to
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entertain the correct structure, though even here it may be biased in the
short term (the short-term bias here comes from quantitative, as opposed to
structural, prior information).

2.4. A Rational–Associative Synergy
We envision a learning system which employs both associative and rational
components in interaction. The associative component mines statistical
relationships from a wide variety of sources, slowly winnowing the number
of interdomain connections that it considers, as many do not produce any
stable associations. As subspaces become sufficiently “modular,” rational
learning proceeds to construct and test manageable sets of hypotheses. In the
other direction, as certain high-level hypotheses are sufficiently well sup-
ported by rational inference, the predictions they make serve to constrain
associative learning, at the lower levels, explaining away some statistical
patterns, thereby rendering them relatively uninformative in subsequent
associative learning. Conversely, patterns that are particularly poorly pre-
dicted by existing hypotheses are ripe targets for additional data mining by
the associative system.

3. A SELECTIVE REVIEW OF EARLY LANGUAGE
ABILITIES AND THEIR SPEED OF ACQUISITION

In this section, we review the early language abilities shown in Table 4.1,
above. As in the table, we characterize each ability as having been acquired
quickly or slowly. We suggest that, in general, abilities that are acquired
slowly reflect the gradual accumulation of data by the associative system. In
contrast, abilities that can be acquired quickly and that generally do not
show a difference in the age of acquisition reflect the rational system.

3.1. Learning Which Phonetic Features Are Distinctive
in the Native Language
A well-documented phenomenon in language development is that infants
begin their lives with the ability to discriminate most of the sound contrasts
used in the world’s languages but lose this ability some time during the first
year of life (e.g. Polka & Werker, 1994; Werker & Tees, 1984). For
example, while nearly all the 6- to 8-month olds and about half of the 8- to
10-month olds tested by Werker and Tees (1984) could discriminate two
nonnative consonant contrasts, only about 20% of the 10- to 12-month olds
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could do so. One possible mechanism that has been suggested to explain
infants’ growing focus on native speech sounds and their decreasing focus on
nonnative sounds requires learners to track the distribution of phonetic
features in their input. Features that occur in a bimodal distribution (e.g.
voice onset time in English) are treated as phonemic (distinctive for marking
meaning differences in words), while features that occur in a unimodal
distribution (e.g. aspiration in English) are treated as allophonic variants of
a single phoneme (Maye, Weiss, & Aslin, 2008; Maye, Werker, & Gerken,
2002). One might imagine that tracking the distributions for dozens of
phonetic features (and, indeed, determining which phonetic features to
process more deeply, perhaps using a rational model) might take several
months, thereby explaining the developmental time course of this aspect of
language development. This conjecture is further supported by the obser-
vation that there are fewer phonetic features involved in distinguishing
vowels than consonants and that infants lose their ability to discriminate
nonnative vowels sooner than nonnative consonants.

Although collecting enough input data to determine whether a partic-
ular phonetic feature is unimodally or bimodally distributed requires time,
the inference from a stable bimodal distribution to two distinct sound
categories appears to be a relatively fast process. In laboratory studies
examining this process, infants are presented for a brief time with nonce
words in which a single phonetic feature is manipulated to create either
a unimodal or a bimodal distribution. Infants who are presented with
a bimodal distribution are more likely to discriminate new word tokens that
vary on the critical feature than infants who are presented with a unimodal
distribution (Maye et al., 2002, 2008). By isolating for infants the relevant
phonetic feature while keeping other features constant, these studies allow
infants to rapidly change the way in which they perceive the feature in
question.

It appears that what takes developmental time in the studies of Werker
and others is accumulating enough data from the multidimensional acoustic
space to identify dimensions on which stable clusters emerge. In a hypothesis
space which is constrained only by basic innate biases (not least the limits of
perceptual hardware and the physical connectivity of the sensory system),
any perceivable dimension may be related to any other, provided only that
the neural representations have the capacity to communicate. Hence, the
probability of spurious clusters which are the products of mere coincidence
is high, and the presence of any given correlation is insufficient for the
rational learner to posit with confidence that there is any “there” there.
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However, as the associative system gradually alters the learner’s represen-
tations, reducing the number of dimensions under consideration and
moving from low-level “primitive” dimensions to more abstract “func-
tional” dimensions1, a more constrained rational learner can find meaningful
structure.

3.2. Learning the Typical Sound Properties of Native
Language Words
Another aspect of language that appears to take several months to develop is
the sensitivity to frequent sound properties of native language words. Two
of these properties are typical stress patterns and typical phoneme sequences,
which we will refer to as phonotactic patterns. With respect to typical stress
patterns, the ground-breaking work of Peter Jusczyk demonstrated that
while English-learning 6-month olds fail to show a listening preference for
the typical strong–weak stress pattern of English words over a weak–strong
pattern, 9-month olds show a robust preference for the typical pattern
(Jusczyk, Cutler, et al., 1993). Subsequent research demonstrated that 7.5-
month olds are able to use their expectation about the frequency of strong–
weak lexical stress to segment words with this pattern from running speech,
while it is not until 3 months later that they are able to segment weak–strong
words (Jusczyk, Houston, & Newsome, 1999).

Other studies generally support these early findings concerning typical
word stress patterns in both English and other languages in which stress is
important (e.g. Morgan & Saffran, 1995; Skoruppa et al., 2009). However,
one study has shown that German 6-month olds (but not 4-month olds)
prefer strong–weak over weak–strong consonant–vowel–consonant–vowel
(CVCV) nonce words (H€ohle, Bijeljac-Babic, Herold, Weissenborn, &
Nazzi, 2009). The authors offer two explanations for these findings. First,
German has proportionally fewer monosyllabic words than English, which
might give German infants more experience with bisyllabic, strong–weak
words. A second explanation concerns the fact that infants in the study by

1 The idea here is that relevant structure is often defined not in terms of raw perceptual
primitives but in terms of the relationships between those primitives, as well as quantities
that are derived by combining primitives. This process is analogous to dimensionality
reduction techniques in machine learning such as principal components analysis and factor
analysis. Finding relationships and combinations that in some sense maximize the sig-
nal-to-noise ratio is likely a result of the associative system operating alongside some
innate biases.
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H€ohle et al. (2009) were presented with the same CVCV nonce words, just
with different stress patterns (e.g. /g�aba/ vs. /gab�a/).

The latter explanation is consistent with the finding by Maye and
colleagues described in the previous section, in which infants were able to
rapidly discern unimodal versus bimodal feature distributions when only
a single phonetic feature was allowed to vary. In parallel fashion, the infants
in the studies by H€ohle et al. may have been better able to recognize the
more frequent stress pattern of German when segmental (consonant and
vowel) variation was minimized. Again, it appears that the statistical
machinery required by the associative learner is in place quite early, but what
takes time in real language learning is applying that machinery to a very large
dimensional space that needs to be winnowed down to the relevant
dimensions. During the winnowing process, the learner’s ability to access the
relevant dimensions is not very robust; however, access can be improved if
the dimension space is reduced by the experimenter.

Turning to infants’ learning of typical phonotactic patterns of the words
in their language, early work by Jusczyk and colleagues demonstrated that,
like for typical word stress patterns, 9-month-old English learners, but not
their 6-month-old counterparts, prefer lists of nonce words that exhibit more
frequent phonotactic patterns over less frequent patterns (Jusczyk, Luce, &
Charles-Luce, 1994). Furthermore, as in the case of typical stress patterns, 9-
month olds can use typical phonotactic patterns to segment words from
fluent speech (Mattys, Jusczyk, Luce, &Morgan, 1999). And as in the case of
typical stress patterns, the data from English learners is corroborated by
studies of children learning other languages (e.g. Jusczyk, Friederici, Wessels,
Svenkerud, & Jusczyk, 1993; Sebasti�an-Gallés & Bosch, 2002).

In addition, the work on phonotactic pattern learning further supports
the view that accumulating data on what is statistically typical of one’s
language is a slow process that can be used robustly throughout
development. For example, in one study (Archer & Curtin, 2011), both 6-
and 9-month-old infants discriminated legal onset clusters (probability in
English> 0, e.g. /bl/) from illegal clusters (probability in English¼ 0, e.g.
/dl/). However, only the 9-month olds discriminated onset clusters
according to their type frequency. For example, clusters such as /pr/, which
occurs as the onset of many English words, were distinguished from clusters
such as /bl/, which does not begin many English words. Interestingly,
neither the 6- nor 9-month olds discriminated onset clusters based on token
frequency (i.e. the overall frequency in English without regard to how many
words the cluster occurred in).
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The ability to distinguish these different sources of variability (among
words vs. among tokens of a single word) is a defining characteristic of
model-based probabilistic inference. The fact that even 9-month olds appear
to keep track of how often a phonotactic pattern occurs in particular words is
evidence that the ability to track types versus tokens is one that is present
very early in life. Whereas the type-token distinction is characteristic of
a rational inference system in general, employing this distinction in the
course of the slow accumulation of input statistics may reflect the influence
of the rational system on the associative system.

3.3. Learning Phonological Rules
In contrast to the apparently slow accumulation of data regarding the typical
word stress and phonotactic patterns of the native language, learning rule-
like generalizations about stress and phonotactics appears to occur very
rapidly in the laboratory. Beginning with stress pattern learning, Gerken
(2004) exposed 9-month olds to three- to five-syllable words in which the
pattern of strong and weak syllables was governed by a set of ranked
(optimality theory) principles. At test, infants were able to distinguish new
words with new stress patterns that confirmed to the previously encountered
principles from those that did not. One of the principles for stress assignment
in the Gerken’s (2004) study was that syllables ending in a consonant should
be stressed. Gerken and Bollt (2008) demonstrated that 9-month olds could
learn that principle if they encountered three different syllable types ending
in a consonant, but not if they encountered multiple tokens of only a single
type. This finding is consistent with a growing body of evidence that infants
and young children learn to generalize over linguistic types and not tokens,
an important component of rational, but not associative, accounts of
language development (Archer & Curtin, 2011; Xu & Tenenbaum, 2007b).

One finding from the study by Gerken and Bollt (2008) described above
illustrates how the slow accumulation of data about what is typical in the
native language interacts with the faster generalization based on rule-like
structure that is a hallmark of rational inference. In one experiment, Gerken
and Bollt presented 7- and 9-month olds with words whose stress patterns
reflected a principle that does not occur in human language: “stress syllables
that begin in /t/.” The younger infants learned this principle, distinguishing
a new stress pattern in which the principle interacted predictably with other
ranked principles from one in which it did not. However, 9-month olds,
who were able to learn the principle that syllables ending in a consonant are
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stressed, were not able to learn the unnatural rule that syllables starting with
/t/ are stressed. A likely explanation for this developmental change is that
although both groups of infants were able to make the types of rational
inference required for rule learning, the older infants did not view syllable
onsets as having a likely effect of word stress.

Why might this be? One possibility is related to the relation of syllable
content and stress in English. At first glance, a learner might perceive
a correlation between syllables starting with /t/ and stressed syllables since
/t/ is the sixth most frequent onset of stressed syllables in one- and two-
syllable words. In other words, based on the sheer frequency of occurrence
and co-occurrence, a plausible generalization is that syllables starting in /t/
are stressed. However, a learner who was able to accumulate additional
statistics of what is typical of English would find that /t/ is no more likely to
be an onset of stressed than of unstressed syllables. Put another way, the
frequent co-occurrence of /t/ onsets and stress can be explained away in
English once the statistics of stressed and unstressed syllables are known.
However, discovering this fact would require knowing enough words that
start with an unstressed syllable to detect that proportionally no fewer of
these start in /t/ than of words starting with a stressed syllable.

We have already noted that English-learning infants at 7 months have
difficulty segmenting words with a weak–strong stress pattern from the
speech stream, perhaps, because they have focused their word-form-learning
efforts on the most frequent word forms in the language (Jusczyk et al.,
1999). Quite possibly 7-month olds would not have sufficient data accu-
mulated about the onsets of weak–strong words to view onsets as unlikely to
affect word stress. In contrast, 9-month olds may have begun to accumulate
sufficient data to weight syllable endings as more likely to affect stress
assignment than syllable onsets. This explanation of the difference in
learning between 7- and 9-month olds requires the accumulation of data
about the language input over developmental time.

Although a greater knowledge of the statistics of English reveals that
a relation of stress and syllable onsets is spurious, a relation between stress and
syllable codas should continue to be viable with more data. Not only are
final consonants very frequent on stressed syllables, conditional probabilities
(Prob (codajstress)) also support the relation in English. Therefore, there is
no basis for 9-month olds to explain away the principle that syllables ending
in codas are stressed in an artificial language, even though that principle is
not absolutely upheld in English. In short, the data suggest that the devel-
opmental change seen in infants’ ability to learn a principle about word stress
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assignment involves an interaction of fast rational inference and slower
accumulation about the statistics of English.

Turning to infants’ ability to learn about phonotactics quickly in the lab,
several of studies provide parallel results to those discussed for stress patterns.
Chambers, Onishi, and Fisher (2003) familiarized 16.5-month-old infants
with CVC syllables in which particular consonants were artificially restricted
to either initial or final position (e.g. /bæp/ not /pæb/). During test, infants
listened significantly longer to new syllables that violated the familiarized
positional constraints than to new syllables that obeyed them. In this study,
infants could have responded based on familiar segment-by-syllable position
correlations (e.g. /b/ first, /p/ last).

A similar study by Saffran and Thiessen (2003) suggests that infants are
rapidly able to consider patterns that embody more abstract featural relations.
They familiarized 9-month olds with words with a consistent word-shape
template. For example, in one condition of their second experiment, infants
were familiarized with CVCCVC words which had the pattern þV, �V,
þV, �V (in which þV¼ voiced and �V¼ voiceless) on the four conso-
nants (e.g. /gutbap/). Infants were then tested to determine if they were able
to segment from fluent speech new words that fit versus did not fit the
familiarized pattern. The familiarization and test words were designed so that
no particular sequence of consonants occurred in both familiarization and
test (e.g. g_tb_p occurred in familiarization but not in test and g_kb_p
occurred in test but not in familiarization). Therefore, the influence of the
familiarization phase on infants’ preference during test was presumably due
to word templates specified in terms of features, not specific phonemes.

In an interesting parallel to the work of Gerken and Bollt (2008), Cristi�a
and colleagues (Cristi�a & Seidl, 2008; Cristi�a, Seidl, & Gerken, 2011) tested
both 7- and 4-month olds’ ability to learn phonotactic patterns that involve
natural and unnatural sound classes. Infants were exposed to CVC nonce
words in which the onset position was either filled by stops and nasals (which
form the natural sound class of minus-consintuant) or the unnatural class of
stops and fricatives. During test, infants were exposed to new words with
different onsets that were either consistent or inconsistent with the grouping
the infant was familiarized with (stops and nasals or stops and fricatives).
While 4-month olds showed evidence of learning both natural and
unnatural groupings, 7-month olds only learned the natural groupings. In
keeping with the discussion of developmental change in infants’ willingness
to entertain natural and unnatural stress assignment principles, we suggest
that the slowly accumulating statistics of English phonotactics is responsible
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for the 7-month olds studied by Cristi�a et al. (2011) rejecting the grouping
of stops and fricatives as a possible generalization. One possible statistical
pattern of English that might be responsible is that both stops and nasals can
occur after /s/, while most fricatives do not (for further discussion, see Cristi�a
& Seidl, 2008). However, not all stops can occur after /s/, and glides and
liquids can also occur after /s/. Because glides and liquids are not part of the
same putative natural class as stops and nasals, further research is needed to
determine if the same developmental pattern seen for stops and nasals applies
to these other sounds as well.

In summary, both stress principles and phonotactic restrictions can be
learned rapidly in the laboratory by infants as young as 4 months. However,
the rapid learning we see for such generalizations appears to be influenced by
the slow accumulation of statistics about typical stress patterns and typical
phonotactic patterns of the infant’s native language.

3.4. Learning the Order of Adjacent Words
A number of studies have demonstrated that infants know about the word
order or the general word-order properties of their native language. For
example, Shady, Gerken, and Jusczyk (1995) presented 10.5-month olds
with normal English sentences as well as sentences in which determiners and
nouns were reversed, resulting in phrases like kitten the. The stimuli were
recorded using a speech synthesizer to avoid disruptions in prosody that are
likely to occur when a human talker produces ungrammatical sentences.
Infants listened longer to the unmodified sentences, suggesting that they
were able to tell the difference between the two types of stimuli. More
recently, a group of researchers asked whether Italian and Japanese 8-month
olds differently parsed a string of nonce syllables with an AXBY format as
beginning or ending with more frequently produced A/B elements
(Gervain, Nespor, Mazuka, Horie, & Mehler, 2008). Japanese is a language
in which the most frequently occurring words (functors) occur sentence-
finally, whereas the comparable elements in Italian occur sentence-initially.
Consistent with the abstract word-order properties of their language,
Japanese-learning infants listened longer to word strings that ended in
frequent A and B syllables, whereas Italian-learning infants showed the
opposite preference.

Other studies demonstrate that infants as young as 4 months can learn the
order of word-like units in short syllable strings (Dawson & Gerken, 2012;
G�omez & Gerken, 1999), as well as learning the more abstract patterns of
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repeated or alternating syllables (Gerken, 2006, 2010; G�omez & Gerken,
1999; Marcus, Vijayan, Rao, & Vishton, 1999). For example, several studies
have shown that 7- and 9-month olds can learn an AAB pattern (first two
syllables are the same) or an ABA pattern (first and third syllables are the
same) easily with minimal input (Gerken, 2006, 2010; Marcus et al., 1999).
Dawson and Gerken (in preparation) found that even 4-month olds were
able to learn such a pattern. Interestingly, although 7- and 9-month olds can
learn the AAB versus ABA pattern instantiated in syllables, they cannot learn
the same patterns instantiated in musical notes or chords. In contrast, 4-
month olds can learn the pattern in both media (Dawson & Gerken, 2009).
Dawson and Gerken explain this developmental difference by noting that
repeated notes are very frequent and therefore highly predictable, once you
know the structure of Western tonal music. Research suggests that only
older infants know about this structure (e.g. Saffran, 2003), and therefore,
only they can explain away musical repetition as the result of general
properties of musical structure and not as a local “grammatical” feature. In
contrast, repetition of words in English is very rare and requires a separate
explanation at all the ages tested.

All the studies cited in this section suggest that learning the order of
particular words in a string, as well as more abstract patterns of frequent or
repeating words, occurs quickly and shows no consistent developmental
change (i.e. the long-term changes that have been observed appear as both
gains and losses in capacity, presumably reflecting changes in broader
knowledge, and not the gradual acquisition of the specific linguistic skills
being tested).

3.5. Learning the Order of Nonadjacent Words
Often in natural language, the presence of a particular word or morpheme is
dependent not on the word immediately preceding, but to preceding
nonadjacent word. For example, in the sentence “Granny is buttering your
toast,” the inflection “-ing” depends not on “butter” but on “is.” Santel-
mann and Jusczyk (1998) found that 18-month olds, but not 15-month olds
listened longer to sentences like “Granny is buttering your toast” than
ungrammatical versions like “Granny can buttering your toast.” Taken
alone, this result might either suggest that younger infants either had not
accumulated enough input data to reliably learn longer distance depen-
dencies or that they do not have the computational inclination or ability to
consider dependencies between nonadjacent elements.
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The latter explanation is supported by work in which a similar devel-
opmental effect for nonadjacent dependencies was observed for learning of
an artificial grammar in the laboratory (G�omez, 2002; G�omez & Maye,
2005). In these studies, infants of different ages were exposed during a 2-min
familiarization period to three-element strings (e.g. pel-kicey-jic) in which the
third word depended on the first word. The middle word was not relevant
to word order, and there were 3, 12, or 24 middle words, depending on the
condition in which the infant participated. Across several studies, infants
were only able to learn the dependency between the first and third word
when the set size of the middle element was 24. G�omez (2002) argued that it
is only when the set size of the middle element is large enough (as it is in
natural language) to force infants to abandon their preferred pattern-finding
strategy of looking for correlations between adjacent elements.

Interestingly, 17- and 18-month olds indicated that they learned the
dependency by demonstrating a novelty preference at test, that is, listening
longer to strings that violated the pattern that they had heard during the
preceding familiarization period. In contrast, 15-month olds demonstrated
that they learned the dependency but demonstrated a familiarity preference,
which G�omez and Maye (2005) take to indicate that they had learned the
dependency less well than the older infants. In contrast, 12-month olds failed
to learn the dependency at all. The set of findings described in this section
suggests that younger infants are unlikely to even look for dependencies
among nonadjacent elements, while older infants (and adults) will look for
such dependencies, provided their normal strategy of looking for adjacent
relations is made sufficiently difficult.

One possible explanation for the developmental change observed in
these studies is that infants are developing a representation of the grammar of
their language using the rational inference system. This grammar can include
dependencies among elements contained within a syntactic constituent. The
associative system then accumulates data about dependencies in the learner’s
native language, and in English, the data demonstrate that “is” but not “can”
predicts “-ing.” Although this proposal is clearly speculative at this point, it
suggests a way in which the rational and associative systems might interact
over the course of development.

3.6. Learning Word Meanings
A well-documented phenomenon in early childhood is children’s ability to
learn the meaning of a word in a single exposure and to remember the word
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over time. This ability, often termed fast mapping was reported by Carey and
Barlett (1978) and has been observed by numerous researchers since (e.g.
Medina, Snedeker, Trueswell, & Gleitman, 2011). Recent research by Xu
and Tenenbaum (2007a, 2007b) has explored fast mapping from a rational
statistical inference perspective (Bayesian modeling). In particular, they
examined the course of learning when a label was applied to more than
a single referent. Xu and Tenenbaum (2007b) showed 3- to 4-year-olds
either a single Dalmatian or three different Dalmatians and labeled each
example fep. They then asked children to give them another fep from a set of
toys that included Dalmatians, non-Dalmatian dogs, and other animals.
Children always treated a Dalmatian as the most likely extension of fep. That
is, even in when presented with a fast-mapping, one-referent one-label,
situation, children behaved as expected. However, when the label was
applied to three different Dalmatians, children (and adults) were less likely to
select a dog that was not a Dalmatian than when the label was applied to
a single Dalmatian. That is, word learners seem to increase their confidence
in the appropriate label-referent pairing, but they achieve near-perfect
performance very quickly. Importantly, Xu and Tenenbaum (2007b)
compared a Bayesian model to an associative (Hebbian) learning model,
which did not distinguish between types (different Dalmatians) and tokens
(the same Dalmatian seen three times). The Bayesian model better matched
the behavioral data.

Despite the general agreement that children are able to learn word-
referent mappings relatively quickly, there is some debate about just how
much exposure is needed. Xu and Tenenbaum (2007b) found that children
picked the subordinate category (e.g. Dalmatian) significantly more when
given three input types than when given a single input type. However,
a study employing more naturalistic scenes and asking adults and
preschoolers to guess the meaning of a word uttered in that scene suggested
that if a particular scene was informative, no additional scenes in which the
same word was used improved participants’ performance (Medina et al.,
2011). Medina and colleagues suggest that their results support a view in
which a single hypothesis is entertained about the meaning of a word,
although the hypothesis might be rejected wholesale if it is subsequently
disconfirmed. A number of features differ between the study by Medina
et al. (2011) and other studies, including the complexity of the scenes and
importantly, whether the speaker intended to teach the participant a word
(Xu and Tenenbaumdyes, Medina et al.dno), and whether a set of
alternative referents was provided at test (Xu and Tenenbaumdyes, Medina
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et al.dno). Although providing alternative referents may be less reflective of
word learning “in the wild,” expecting very young learners to hear a word
form and guess its meaning in a free field may also be unusual. Therefore,
until additional evidence comes to light that word learning is not a form of
hypothesis testing, we will view this domain as generally consistent with
rational inference.

3.7. Learning Likely Referent Properties Involved
in Word Meaning
As noted, the findings in the previous section suggest that learning the
meanings of words can occur quite quickly, which we take to be generally
consistent with rational statistical inference in the form of Bayesian models
(though see Yu & Smith, 2012). However, it is important to note that the
children in the study by Xu and Tenenbaum (2007b) were relatively
experienced word learners. Other work with younger learners suggests that
determining which features of word referents are likely to be important in
assigning word meaning is a slower process (Smith, Jones, Landau,
Gershkoff-Stowe, & Samuelson, 2002).

If learning the appropriate semantic extension of category labels is the
first level of word learning, then learning to prioritize some features over
others when extending category labels to novel exemplars can be thought as
a form of second-order learning as it requires the child to abstract across
multiple object categories and extract similarities in their featural organiza-
tion. Some authors argue for an associative approach to learning at this level,
suggesting that learners must first master several first-order cases before
moving up the abstraction ladder to form the higher order generalization.
Samuelson (2002) as well as Colunga and Smith (2005) propose con-
nectionist models of the “shape bias” documented by Smith et al. (2002),
which leverage input statistics (e.g. that labels for solid objects tend to be
preceded by “a” and “the” and appear in both singular and plural forms,
whereas labels for materials have only one form and can appear without
a determiner or with the determiner “some”) to arrive at a taxonomy in
which solid object categories and substance categories occupy different
regions in semantic space, and hence, labels of the former should generalize
along a shape dimension but not along a color dimension, whereas the
reverse is true for labels of materials.

Due to the wide variety of potentially relevant input statistics, and due to
its tendency to build abstractions from the bottom-up, the associative learner
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requires a lot of input to acquire second-order generalizations like the
(selective) shape bias. Along the way, they overextend the shape bias beyond
the appropriate ontological kind, reflecting the empirical behavior of children.

There have been attempts to account for higher order learning of this
sort using rational probabilistic models as well. Kemp, Perfors, and
Tenenbaum (2007) frame knowledge about which feature dimensions to
use in generalization as arising from the learner’s representation of vari-
ability within categories along each such feature. Low variability for
a particular feature reflects high consistency, and hence, novel exemplars
are more likely to share this feature with those previously experienced.
Kemp et al. present a hierarchical Bayesian model (HBM) which begins
with the assumption that objects are divided into kinds (but does not
know how many there are) and that kinds are divided into categories and
learns from experience with labeled objects that solid and nonsolid
categories are organized along different features.

An interesting feature about the HBM approach taken by Kemp et al.
(2007) is that, under some conditions, lower order generalizations are
learned before higher order ones, and under others, learning occurs in the
opposite order. In the case of the shape bias, depending on the statistical
distributions in the input, it is possible to learn the general tendency for
labeled object categories to be organized by shape with very little data from
any particular category. This is a result of the representational distinction
made between types and tokens: If the learner encounters two tokens from
each of several different types, and within types, the pairs always have the
same shape, then the model will be very confident that categories are shape
homogeneous and can confidently predict the properties of a new category
from a single instance.

The case of reference may lie at the intersection of the associative and
rational systems. A rational learner like the one exhibited by Kemp et al.
(2007) is able to learn at multiple levels of abstraction simultaneously,
provided it is looking for the right kind of ontology, namely one in which
a certain class of linguistic constituent (somewhere between a noun and
a noun phrase) is assumed to refer to an object and where nouns are orga-
nized into broad classes, each of which has different semantic organizing
principles. With relatively few properties to focus on, learning proceeds
quickly, and the model discovers the distinction between categories which
are organized by shape and categories which are organized by material.

Before such a rational learner can proceed, however, the child would
need sufficient statistical evidence that there is more than one type of noun
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to begin with. In the model by Kemp et al., the fact that a different set of
variability parameters should be inferred for each of a number of ontological
kinds was given at the start. That is, the model’s representation is structured
in such a way that the color distribution of a particular object category is
taken to be informative about only one ontological kind, even though it is
unknown which one. This is analogous to the type–token representational
distinction, at a higher level in the hierarchy. Unlike the Bayesian model, the
children in Smith et al. (2002) overgeneralize their shape bias to mass-noun
categories, suggesting that they do not yet have this clean representational
distinction. It seems plausible that some slow, associative data mining is
needed to reach the point where nouns can come in distinct ontological
kinds, after which point a rational learner can take over.

4. DISCUSSION

In this chapter, we have reviewed empirical evidence pertaining to
a variety of linguistic domains. For each domain, we have attempted to
roughly classify it as “fast” if it can be learned in a short laboratory visit by
learners of different ages or “slow” if the ability is differentially present in
learners of different ages.

One way to characterize the pattern of fast- and slow-developing abilities
that we have described is as follows: Fast learning appears to involve either
domains in which the pattern observed in the input can be described as
generated by a rule or in which a word-referent pairing is established
(particularly by experienced word learners). Slow learning seems to share
two properties. One is that it involves domains in which the learner needs to
establish detailed distributions of features in the input. Examples of this type
of slow learning from Table 4.1 are learning which phonetic features are
distinctive in the native language, learning the typical sound patterns of
native language words, and learning the likely referent properties involved in
word meaning. The other example of slow learning shown in Table 4.1 is
learning the ordering of nonadjacent words. Here we argue that what might
take developmental time is not only accumulating data about what words
and morphemes co-occur (e.g. “is” and “-ing”) but knowing to look for co-
occurrences among nonadjacent elements in the first place. The combina-
torial explosion involved in looking for all potential co-occurrences without
restricting oneself to a bounded domain is computationally prohibitive.
Therefore, it appears that learners must first appropriately represent the
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syntactic constituents in their language, such as sentences and phrases, before
they can make significant progress in finding meaningful nonadjacent
relationships. Once they have made such a determination, restricting the
search for co-occurrences within constituents can proceed.

To summarize, we have characterized language learning as involving two
distinct but interacting inference systems. The first is a rational system (of the
sort that occurs in Bayesian probabilistic inference) that is able to learn
quickly, provided it begins with the appropriate hypothesis space. The
second is an associative system (of the sort modeled by Hebbian associative
networks) that learns more slowly, but also more flexibly, than the rational
system. We have suggested two principal ways in which each system takes
advantage of the “output” of the other: First, the associative system alters and
simplifies the representations employed by the learner, allowing the rational
system to test a better constrained set of hypotheses. In turn, the rational
system provides a grammatical framework, including prospective units of
analysis (e.g. syntactic constituents, word types instead of tokens), that guides
the data accumulation of associative system and also allows what would
otherwise be “suspicious” coincidences to be explained away, preventing
overlearning of spurious associations.

4.1. Why Is One System Insufficient?
Occam’s razor dictates that one should only propose two entities when one
cannot adequately account for the data. We have outlined some strengths
and weaknesses of each of the two systems and described how the weak-
nesses of each are compensated for by the strengths of the other in a hybrid
system. But it is certainly worth considering whether a single system could
reasonably account for the empirical data, even if it does not have all the
advantages of a dual system. We conclude that a “pure” learner of either
stripe will encounter some major difficulties when faced with the complex
challenge of acquiring all the linguistic abilities that adults seem to possess.
We consider these difficulties in turn for associative and rational inference.

4.1.1. Logical and Empirical Challenges for a Purely
Associative Theory
A purely associative account of learning faces problems both in principle and
in its ability to account for observed experimental data. The most obvious
logical challenge was pointed out by Chomsky and others: without repre-
sentational constraints, the number of correlations and generalizations that
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are possible from any finite data set is prohibitively enormous. In the specific
context of a neurally inspired model, there is a problem of combinatorics: it
is physically impossible for everything to connect to everything else.
Admittedly, this is a straw argument: the most die-hard connectionist purist
makes some representational assumptions, and biases are built into the way
the network is arranged.

The principal empirical evidence against a purely associative account, as
we see it, is twofold. First, associative accounts predict slow, gradual
learning, which is at odds with data from many areas of language learning
such as word learning (Xu & Tenenbaum, 2007a, 2007b), phonological
categorization (Maye et al., 2002), and syntactic acquisition (Gerken, 2010).
Second, and perhaps most directly in support of a need for a rational
component, infants represent variability at multiple levels, treating types and
tokens differently (Archer & Curtin, 2011; Xu and Tenenbaum, 2007b),
which an associative account would not predict.

4.1.2. Challenges for a Purely Rational Theory
The chief logical problem with a pure “hypothesis-testing” theory of
language learning is determining where the hypotheses come from. Trig-
gering theories rely on a fairly detailed innate hypothesis space, but their
proponents arrive at this conclusion indirectly, by arguing that language
learning is impossible, and not by direct empirical evidence. It would be
more satisfying, as a scientific matter, to assume as little as possible in the way
of innate knowledge and develop an account of a learner that could acquire
the right kinds of biases from input.

Empirically, purely rational accounts have a difficult time predicting the
time course of linguistic development. While they tend to do well at
accounting for patterns of behavior within the laboratory, Bayesian models
rely on a precise characterization of the input in order to make specific
predictions, which is not generally available for longer time courses. This is
the opposite of the problem faced by connectionist models, which rely on
“asymptotic” results.

4.1.3. Solutions Offered by a Hybrid Model
We have discussed some ways in which rational and associative inference
have complementary strengths and weaknesses. One area we have focused
on is learning speed. Some aspects of language development, especially those
studies in brief laboratory visits, appear to occur very quickly, while others
appear to proceed more slowly. The hybrid model that we are proposing
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arose largely as a framework for understanding these different developmental
time scales.

In addition, we believe that the hybrid model offers a solution to the
problem of the explosion of units and statistics that either an unconstrained
associative learner or an unconstrained rational learner would face on its own.
Each time that the rational inference system adds something to the grammar,
the associative learner is newly constrained in terms of the units over which it
keeps statistics. Although we have not dealt specifically with the different
possible statistics that an associative learner might track, all of our examples
rely on tracking only frequency distributions, forward conditional proba-
bilities, adjacent dependencies, and nonadjacent dependencies within the
bounds of syntactic constituents. Conversely, the associative learnermay limit
the set of hypotheses considered by the rational learner.

Finally, the hybrid model has the potential to harness the hypothesis-
testing power of the rational system, while leveraging the “creative” power
of the associative system to generate hypotheses in the first place. Peirce
(1935) described “inference to the best explanation,” also known as
abductive inference, as follows:

(1) The surprising fact, C, is observed.
(2) But if A were true, C would be a matter of course.
(3) Hence, there is reason to suspect that A is true.

dCharles Sanders Peirce (1935)

Once the set of possible explanations is determined, a rational inference
system can proceed in this manner, settling on the explanation that makes
the data the least surprising. However, the associative system is needed to
construct a pool of potential representations out of the sound and fury, some
of which the rational system can explain away as truly signifying nothing.

We close this chapter by remarking that the hybrid framework we have
outlined here is clearly not yet a fully formed theory of language learning.
We have roughly divided linguistic capacities into two categories and
attempted to fit these categories into the mold of either rational Bayesian
inference or associative Hebbian learning, and we have attempted to
describe ways in which these two systems might interact. It will likely be
possible to expand upon our conception of either rational or associative so as
to expand its territory beyond the blurry boundary lines we have drawn, but
while the precise limits are flexible, we are hopeful that the conceptual
distinctions we have made here will prove fruitful in future discussions of the
nature of language learning.
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Abstract

A major challenge children face is uncovering the causal structure of the world around
them. Previous research on children’s causal inference has demonstrated their ability to
learn about causal relationships in the physical environment using probabilistic
evidence. However, children must also learn about causal relationships in the social
environment, including discovering the causes of other people’s behavior, and
understanding the causal relationships between others’ goal-directed actions and the
outcomes of those actions. In this chapter, we argue that social reasoning and causal
reasoning are deeply linked, both in the real world and in children’s minds. Children use
both types of information together and in fact reason about both physical and social
causation in fundamentally similar ways. We suggest that children jointly construct and
update causal theories about their social and physical environment and that this
process is best captured by probabilistic models of cognition. We first present studies
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showing that adults are able to jointly infer causal structure and human action structure
from videos of unsegmented human motion. Next, we describe how children use social
information to make inferences about physical causes. We show that the pedagogical
nature of a demonstrator influences children’s choices of which actions to imitate from
within a causal sequence and that this social information interacts with statistical causal
evidence. We then discuss how children combine evidence from an informant’s
testimony and expressed confidence with evidence from their own causal observations
to infer the efficacy of different potential causes. We also discuss how children use
these same causal observations to make inferences about the knowledge state of the
social informant. Finally, we suggest that psychological causation and attribution are
part of the same causal system as physical causation. We present evidence that just as
children use covariation between physical causes and their effects to learn physical
causal relationships, they also use covaration between people’s actions and the envi-
ronment to make inferences about the causes of human behavior.

1. INTRODUCTION

In the past 10 years, the probabilistic models approach to cognitive
development, also known as rational constructivism, has begun to be applied
to many aspects of children’s development, particularly their causal inference
and learning. In the first wave of this research, however, the focus was
squarely on physical knowledge, such as the relation between blickets and
blicket detectors (or the workings of other physical machines). In these types
of studies, for example, an experimenter may place a series of blocks on top
of a machine. Some blocks are “blickets” and make the machine produce an
effect (e.g., lighting up and playing music), while other blocks do not.
Children are then asked to make causal inferences from the evidence they
see, such as which block was a blicket or which new block should make the
machine go. In this vein, work from our lab and others has demonstrated
that children possess sophisticated causal reasoning abilities, including
making rational inferences from probabilistic input (e.g., Gopnik et al.,
2004; Kushnir & Gopnik, 2005, 2007; Schulz, Bonawitz, & Griffiths, 2007;
Schulz, Gopnik, & Glymour, 2007; Sobel & Kirkham, 2006; Sobel,
Tenenbaum, & Gopnik, 2004).

These initial studies were generally limited to investigating how children
learn by observing causal relationships in their physical environment and did
not take the child’s social environment into account. From an early age,
children are exquisitely sensitive social beings and their causal learning takes
place in a rich social context. A natural question is therefore how social
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interaction informs and influences children’s causal learning and how causal
reasoning influences children’s social inferences.

Data about “purely physical” causes does not exist in a vacuum – blickets
are not putting themselves on the machine, after all. There is a social and
psychological component to the causal learning that results from our inter-
actions with other people. Even in the relatively simple context of a blicket
detector experiment, the child not only must consider the physical evidence
of the machine’s activation but also must make inferences about the exper-
imenter’s actions and mental states. Did she put the blicket on the machine in
the right way? She says she knows what makes the machine go, but does she?
Is she just trying to make the machine go or does she also want to teach me
how it works? Children can use the physical blicket evidence to make social
inferences (the block did not work, so she must not know what she is doing)
or use the experimenter’s testimony and actions to make inferences about the
blickets (since she says she knows what she is doing, she must be teaching me
about which blickets I should use, so I will pick the same one).

In general, social and physical causation will be inextricably linked in
most real-life causal learning, especially since the goal-directed actions of
others lead to many of the causal outcomes children observe. In fact, even
infants and toddlers seem to expect that the causally relevant events they
observe in the world will have been produced by the actions of social agents
(Bonawitz et al., 2010; Meltzoff, Waismeyer, & Gopnik, in press; Saxe,
Tenenbaum, & Carey, 2005; Saxe, Tzelnic, & Carey, 2007).

We argue that children jointly construct theories about both the physical
and the social world, which in turn generate higher-order theories that shape
children’s interpretation of future events. This natural learning process
parallels the scientific method, and thus, we can characterize children’s
learning with the metaphor of children as intuitive scientists.

This metaphor might suggest that children just learn on their own, but
neither children nor scientists are solitary learners. Both scientists and chil-
dren learn extensively from the actions, reports, and tuition of others.

Teachers serve a particularly important function in this regard, both
formally in the classroom and informally in the world. Recent work on
“natural pedagogy” (Csibra & Gergely, 2006, 2009; Gergely, Egyed, &
Kir�aly, 2007) and children’s understanding of testimony (e.g., Corriveau,
Meints, & Harris, 2009; Jaswal, Croft, Setia, & Cole, 2010; Koenig & Harris,
2005; Pasquini, Corriveau, Koenig, & Harris, 2007) has demonstrated that
infants and young children are sensitively tuned to others and can learn from
them in complex and subtle ways. The pedagogical intent of a social
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demonstrator can influence everything from children’s exploration of
a novel toy (Bonawitz et al., 2011) to their generalizations about objects’
functional properties (Butler & Markman, in press). The expertise (e.g.,
Koenig & Jaswal, 2011; Kushnir, Vredenburgh, & Schneider, under review;
Sobel & Corriveau, 2010) and past accuracy (e.g., Birch, Vauthier, &
Bloom, 2008; Corriveau et al., 2009) of a social informant affects what
children learn from this informant in the future.

At the same time that children learn from others, they also learn about
others. In the past 10 years, “theory of mind” research has found not only
more and more sophisticated psychological understanding at younger ages
but also a strikingly consistent rational pattern of advances in that under-
standing as children get older (Wellman & Liu, 2004). More recently, there
has been a renewed interest in children’s social cognition and their under-
standing of social concepts such as in-groups and out-groups (Dunham,
Baron, & Banaji, 2008; Kinzler, Dupoux, & Spelke, 2007; Rhodes &
Gelman, 2008) and personality traits (Liu, Gelman, & Wellman, 2007). We
suggest that the outcomes of other people’s actions are not only informative
about the causal systems they act on but also socially informative about the
actors themselves. Furthermore, we argue that children’s inferences about
psychological causes of behavior such as traits are fundamentally causal
inferences, relying on the same probabilistic learning mechanisms as their
inferences about physical systems such as blicket detectors.

Other recent results further support the notion that we can apply
probabilistic models to both the social context of causal understanding and
the causal context of the social world. Schulz and Gopnik (2004) found that
children inferred psychological causal relationships from covariation in
much the same way that they inferred physical and biological relationships.
Kushnir, Xu, and Wellman (2010) and Ma and Xu (2011) found that infants
as young as 14 months old showed some capacity to infer an underlying
desire from a person’s pattern of nonrandom sampling behavior. Addi-
tionally, Kushnir, Wellman, and Gelman (2008) and Sobel, Sommerville,
Travers, Blumenthal, and Stoddard (2009) found that children’s causal
inferences are sensitive to the social environment. On the computational
side, Shafto and colleagues (Bonawitz et al., 2011; Shafto & Goodman,
2008; Shafto, Goodman, Gerstle, & Ladusaw, 2010) have modeled how
pedagogical information may be used differently than nonpedagogical
information in solving inductive problems.

How children learn from social sources of causal information becomes an
especially interesting question when we move beyond artificial laboratory
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tasks such as blicket detectors. Much of the real-world causal evidence
children receive involves complex statistical patterns of both actions and
outcomes. Consider the case of learning which actions are necessary to open
a door. Children might notice that people almost always grasp and then turn
a doorknob before the door opens, but sometimes they pull a handle instead.
They frequently insert a key into a lock and then turn it before trying the
doorknob, but not always. Sometimes the sequence of actions must be
repeated a couple of times (for instance, in the case of a jammed lock); other
times, the sequence fails and is not followed by the door opening at all.
Often, other actions precede the door opening as well – putting down
groceries, fumbling around in a purse, ringing a doorbell, sliding a bolt –
which of these are causally necessary and which are incidental? Does the
order they were performed in matter? Finally, in addition to these obser-
vations, children might receive direct testimony about the door. For
instance, someone who lived in the house might say that jiggling the key
almost always works or someone unfamiliar with the door might guess that
this is the case. How might children combine these statements with other
sources of causal evidence?

In just this simple example of opening a door, we can see that there are
not only many potential types of causal information available but also many
different sources of statistical variation and ambiguity. There is variation in
the physical data – actions (and other causes) may not always bring about
their effects or may only lead to the desired outcome in certain combina-
tions. There is variation in the action sequence – repeated demonstrations of
bringing about the same outcome may include different actions. There is
variation in people’s behavior – some individuals might succeed at opening
the door while others fail or might be successful with one door while failing
to open another. There is even variation in direct testimony – people may
express differing levels of certainty and causal knowledge, and the testimony
of multiple people may even conflict. Finally, children must also take into
account their own prior knowledge and expectations about not only the
causal system in question but also the intentions, knowledgeability, and
helpfulness of their social informant, all of which could vary widely across
situations.

On the other hand, while all this ambiguity can make the causal infer-
ence problem children face more challenging, there are times when the
presence of statistical variation can actually be quite illuminating and aid
inference. Actions that do not consistently precede outcomes are less likely
to be causally necessary. Actions that reliably appear together and, in fact,
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predict each other, are more likely to be coherent units, corresponding to
intentional, goal-directed action. Variations in the certainty and accuracy of
a social informant can facilitate our judgments of the trustworthiness of the
information they provide. Variation in the success and failure of individuals
might help us infer situational or psychological causes for their behavior such
as personality traits.

Formal modeling can be extremely helpful in disentangling these
complex inferences. First, formal models give us a way of precisely char-
acterizing hypotheses about what the child thinks and knows. Rational
constructivism, and probabilistic computational models in particular, is
a natural way to approach understanding how social information, along with
other evidence, contributes to children’s causal reasoning, because they
allow us to systematically represent both beliefs and evidence. Intuitively,
this can be seen as a formal version of the approach developmental
psychologists have used historically. The method is to hypothesize that
children have particular beliefs or conceptions of the world and to assume
that children’s answers and actions follow rationally from those beliefs. For
example, if children initially have a non-representational theory of mind, we
would expect them to rationally infer in a false-belief task that a person will
immediately search for an object in the location where it actually resides
rather than where she last saw it. The classic developmental methodology,
then, is to work backward and infer children’s current theories from their
answers and actions, by assuming that they are operating under the theory
that is most consistent with their behavior.

Describing the child’s current conception of the world as a particular
rational model gives us a more exact way of both characterizing the child’s
beliefs and working out the predictions that should rationally follow from
those beliefs. It also lets us make predictions about how children should
rationally update those beliefs with new evidence. By specifying a model, we
make explicit our hypotheses about the prior biases and information children
bring to a problem and how these biases should be combined with new
information in order to update beliefs or even potentially change models or
theories. Conversely, we can compare different possible models of the
children’s beliefs and see which models are most congruent with children’s
behavior. This approach allows us to give a more precise justification for
attributing particular theories to the children, theories that may or may not
be like adult theories.

Second, probabilistic models give us a way of more precisely combining
and weighting how different factors interact in the child’s mind to bring
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about a particular response. It is common in developmental psychology to
see children make different judgments in different contexts. This inconsis-
tency has sometimes been taken to mean that all children’s cognition is
variable and context dependent and that there is no coherent conceptual
structure to be found (e.g., Greeno, 1998; Lave & Wenger, 1991; Thelen &
Smith, 1994). At other times, it has led to unresolved debates, for example,
about whether early imitation is rational or not. As we will see, probabilistic
models allow one to precisely show how multiple sources of evidence,
reflecting different contexts, can be rationally combined and integrated to
lead to a particular response.

In this chapter, we report two lines of research that apply the ideas of
probabilistic modeling to social cognition and explore the complex and
interdependent relationship between social and causal learning. In the first
set of studies, we examine how the social context, in the form of both
demonstrations and testimony, influences children’s causal learning. We also
examine how causal learning can influence the understanding and
segmentation of action and how observed statistical structure in human
action can affect causal inferences. In the second set of studies, we examine
how children might use covariation in human behavior to infer and attribute
mental traits to others, in the same way that they use covariation in cause and
effect data to infer physical causal structure. Both lines of research extend
probabilistic models from reasoning about purely physical causes to include
children’s social cognitive development, while also characterizing the
distinctive aspects of psychological and physical causal reasoning.

2. THE SOCIAL CONTEXT OF CAUSAL REASONING

2.1. Jointly Inferring Causal Structure and Action
Structure

As we discussed in the introduction, many if not most of the causal outcomes
children witness are the result of intentional human action. Children must
be able to distinguish the unique actions they see other people performing
and recognize their effects in order to understand the reasons behind others’
behavior and in order to potentially bring about those effects themselves.
But before we can interpret actions, we first must parse a continuous stream
of motion into meaningful behavior (Byrne, 2003). What cues do we use to
do this? How might infants and young children begin to break into the
behavior stream in order to identify intentional, goal-directed actions?
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Could the causal relationships between actions and their outcomes in the
world help children understand action structure itself? How might children
identify reaching, grasping, and turning and then group them into the action
“opening the door”?

One way that infants might be able to segment actions is by using
statistical regularities in human motion. There is now a lot of evidence that
both infants and adults use statistical patterns in spoken language to help
solve the related problem of segmenting words from continuous speech
(e.g., Aslin, Saffran, & Newport, 1998; Pelucchi, Hay, & Saffran, 2009;
Saffran, Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996). In these
experiments, infants (and adults) listen to an artificial language constructed of
made-up words, usually created from English syllables (e.g., dutaba, patubi,
pidabu). The words are assembled into a continuous speech stream (e.g.,
dutabapatubipidabu.), with other potential segmentation cues such as
intonation and pauses removed. In these experiments, as in many words in
real languages, syllables within a word have higher transitional probabilities
than syllables between words – you are more likely to hear ta followed by ba
(as in dutaba) than to hear bi followed by pi (as in patubi pidabu). Both
infants and adults are able to use these transitional probabilities in order to
distinguish words in these artificial languages (dutaba, patubi, pidabu), from
part-words – combinations of syllables that cross a word boundary (e.g.,
tabapa, tubipi), and from nonwords, combinations of syllables that do not
appear in the artificial language at all (e.g., dupapi, babibu). Infants have also
been shown to succeed at statistical language segmentation even when more
naturalistic language stimuli are used (Pelucchi et al., 2009).

More recently, a similar sensitivity to statistical regularities has been
shown to play a role in action segmentation in both adults (Baldwin,
Andersson, Saffran, & Meyer, 2008) and infants (Roseberry, Richie, Hirsh-
Pasek, Golinkoff, & Shipley, 2011). Intriguingly, there is also evidence that
children can successfully map words learned through this type of segmen-
tation to meanings (Estes, Evans, Alibali, & Saffran, 2007) and, conversely,
can use words they already know to help find segment boundaries and
discover new words (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005).
Similarly, a recent study shows that, in the visual domain, children use
statistical patterns to infer the boundaries between objects and then use that
information to make further predictions about how objects will behave
(Wu, Gopnik, Richardson, & Kirkham, 2011). So children do not just
detect the statistics and then segment the streams accordingly. They actually
treat those statistical units as if they were meaningful.
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In the sameway thatwords havemeanings, intentional actions usually lead
to causal outcomes. This suggests that just as identifying words assists in
mapping them to meanings, segmenting human action may bootstrap
learning about causation and vice versa. Recent work has demonstrated that
adults can segment videos of common everyday behaviors into coherent
actions (Baldwin et al., 2008; Hard, Tversky, & Lang, 2006;Meyer, Decamp,
Hard, Baldwin, & Roy, 2010; Newtson, Engquist, & Bois, 1977; Zacks &
Tversky, 2001;Zacks, Speer, Swallow,&Maley, 2010) and that both children
and adults can infer causal relationships from conditional probabilities
(Cheng, 1997; Gopnik et al., 2004; Griffiths, Sobel, Tenenbaum, & Gopnik,
in press; Griffiths & Tenenbaum, 2009). However, researchers have not yet
explored whether action parsing and causal structure can be learned jointly.

In our work (Buchsbaum, Griffiths, Gopnik, & Baldwin, 2009, 2012),
we adapted a Bayesian word segmentation model (Goldwater, Griffiths, &
Johnson, 2009), with actions composed of individual small motion elements
(SMEs) taking the place of words composed of phonemes or syllables, and
extended this model to incorporate causal information. The key intuition
behind this model is that action segmentation and causal structure are jointly
learned, taking advantage of statistical evidence in both domains. In the
model, sequences of motion that correspond to known actions are
considered more likely to be causes, and sequences of motion that appear to
be causal (they predict outcomes in the world) are considered more likely to
be actions. The inferred action boundaries help determine the inferred causal
structure and vice versa. This corresponds to our hypothesis that people
believe intentional actions and causal effects go hand in hand. If statistical
action structure is a cue to causal relationships then, like our model, people
should think statistically grouped actions are more likely to be potential
causes than other equivalent sequences. Additionally, if people believe that
causal sequences of motion are also likely to be actions, then adults should
find causal sequences to be more meaningful and coherent than other
sequences with equivalent statistical regularities. Finally, if action segmen-
tation and causal relationships are truly jointly learned, then we should see
cue combination and cue conflict effects emerge, as in other cases of joint
perceptual inference (Ernst & Banks, 2002).

We tested all these predictions in a set of experiments using “artificial
action grammars” as in Baldwin et al. (2008). Just as a sentence is composed
of words, which are in turn composed of phonemes or syllables, here an
action sequence is composed of actions, which are themselves composed of
SMEs. Similar to Baldwin et al., we used video clips of object-directed
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motions to create three-motion actions, which we then combined to create
continuous videos of a person manipulating an object.

Just as people can recognize words from an artificial language, and
distinguish them from nonwords and part-words, we also know that they
can recognize artificial actions grouped only by statistical relationships and
can distinguish these sequences from nonactions (motions that never
appeared together) and part-actions (motion sequences that cross an action
boundary) (Baldwin et al., 2008). We wanted to see whether people think
these statistically defined actions are meaningful sequences that can help
them understand and interpret others’ behavior and whether they believe
that these actions are likely to be causal.

In the first experiment, after watching a video, adult participants rated
actions, part-actions, and nonactions on how coherent the sequences
seemed to be. They were given the example of removing a pen cap and then
writing with the pen as motions “going together” and of removing a pen cap
and then tying your shoes as motions “not going together.” Participants also
rated sequences on how likely they thought those motions were to be causal.
In this case, we gave participants a cover story. They were told that some of
the sequences of motion they were observing would make the manipulated
object play music, but there was no sound in the video, so they would just
have to guess how likely each sequence was to cause music.

Adults rated the sequences corresponding to actions as both more
coherent andmore likely to be causal than the nonactions and part-actions. In
fact, after the experiment, some of the participants commented on howmuch
more “sense” some of the action sequences made, often coming up with post
hoc intentional explanations for the actor’s behaviors (“she shook it to see if
anything was inside, then emptied it, then looked inside to check”). This is
striking because the “nonactions” of one video were in fact the “actions” of
another, meaning that people found the very same sequences of motion to be
moremeaningful based purely on how frequently they appeared together and
how well the component motions predicted each other.

These results show that people’s sensitivity to statistical patterns in action
is not just an artifact of the impoverished stimuli but plays a real role in their
understanding of the structure of observed human behavior. The fact that
people found the statistically grouped actions to be more coherent suggests
that they do not experience the sequences they segment out as arbitrary but
assume that they are meaningful groupings that play some (possibly inten-
tional) role. This is further supported by the fact that, even without being
presented with overt causal structure, people believe that the statistically
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grouped actions are more likely to be causally effective, suggesting that
inference of action structure and causal structure really are linked.

People seem to use statistical action structure to infer causal relationships
but can they use causal relationships to identify meaningful actions? We
hypothesized that when statistical cues to action segmentation are unavail-
able, adults will be able to use causal structure to identify coherent units of
action. In a second experiment, we had adults watch specially constructed
videos where all possible combinations of three motions appeared equally
often together, so that joint and transitional probabilities could not be used
to identify groupings. However, one particular sequence of three motions
was chosen to be causal and was always followed by the manipulated object
playing music, and this time the sound in the video was on. Adults easily
identified the correct set of causal motions from within the longer sequence,
one of the first demonstrations of causal variable discovery from a contin-
uous stream of events. Additionally, even though there were no statistically
grouped actions in this experiment, participants perceived the causal
sequence as being more meaningful (going together better) than the other
sequences, suggesting that they had nonetheless segmented it out as
a coherent action based on its causal efficacy.

In a third experiment, we looked at the inferences people make when
both types of cues – statistical action structure and causal relationships – are
present. Can people combine information from both these sources of
evidence, even when they conflict? This type of cue integration is often used
as evidence of true joint inference, for instance, when visual and haptic
information about the same stimuli are combined in inferences about an
object’s size (Ernst & Banks, 2002). As in our first experiment, we showed
adults videos of statistically grouped actions, but now we selected a part-
action (a set of motions crossing an action boundary) as the causal sequence
that leads to music. Adults appeared to take both the causal relationships and
the statistical structure into account, correctly identifying the part-action as
the most likely cause, but continuing to rate actions as more likely to also be
causal when compared to other part-actions and nonactions. Similarly, they
judged the causal part-action to be very cohesive, even though it violated
the statistical regularities of the action sequence, suggesting that its causal
properties led to it being considered a coherent unit of human action.

Together, these three studies demonstrate that adults, at least, can
combine statistical regularities and causal structure to divide observed human
behavior into meaningful actions. They can also use this inferred segmen-
tation to help them identify likely causal actions. Additionally, the parallels
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between people’s word segmentation and action segmentation abilities
support the possibility of a more general statistical learning mechanism.
These results also provide a demonstration that causal and social information
can be jointly used to infer goal structures. In the following section, we will
look at whether young children make similar types of inferences. Can
children identify causal subsequences of action from within a longer action
sequence when deciding which actions to imitate?

2.2. Causal Imitation from Social Demonstrations
Imitation is a characteristic and pervasive behavior of human children and so
it seems like a natural mechanism for identifying and learning causal actions.
How do children choose what to imitate from all the actions they see
performed around them? When they see a sequence of behaviors preceding
an interesting outcome, can they choose the relevant actions? Do they
imitate different portions of sequences when given different evidence about
their effectiveness?

Recent studies of children’s imitation have produced varying answers to
the question of whether children are in fact capable of inferring causal action
sequences from observed demonstrations. Children can use information
about an actor’s prior intentions to help them identify causally effective
actions (Carpenter, Call, & Tomasello, 2002). Similarly, when children
observe unsuccessful demonstrations, they reproduce the actor’s intended
goals rather than the unsuccessful actions themselves (Hamlin, Hallinan, &
Woodward, 2008; Meltzoff, 1995). In some cases, they vary the precision
and faithfulness of their imitation with apparent causal relevance (Brugger,
Lariviere, Mumme, & Bushnell, 2007; Harnick, 1978; Williamson &
Markman, 2006) and selectively imitate actions based on how causally
effective they appear to be (Schulz, Hooppell, & Jenkins, 2008; Want &
Harris, 2001; Williamson, Meltzoff, & Markman, 2008). At other times,
however, children will “overimitate,” reproducing apparently unnecessary
parts of a causal sequence (Horner & Whiten, 2005; Lyons, Young, & Keil,
2007; Lyons, Damrosch, Lin, Macris, & Keil, 2011; McGuigan & Whiten,
2009; McGuigan, Whiten, Flynn, & Horner, 2007) or copying an actor’s
precise means (Meltzoff, 1988) even when this makes them less efficient at
accomplishing their goal.

There are even cases where children do both in the same study. In the
“rational imitation” studies by Gergely, Bekkering, and Kir�aly (2002),
children saw an experimenter whose hands were either free or confined
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activate a machine using their forehead. Children both produced exact
imitations of the actor (touching their head to the machine to make it go)
and produced more obviously causally efficient actions (touching the
machine with a hand), though the proportion of such actions differed in the
different intentional contexts. In fact, finding a distribution of imitative
responses is the norm across all these studies. Even in the most intriguing
demonstrations of overimitation, it is not the case that all children blindly
mimic the demonstrator’s actions, and similarly, even in experiments where
children show an overall appreciation for causal efficacy, some children still
imitate unnecessary or ineffective actions.

We are interested in reconciling these results by suggesting that perhaps
all these imitative choices are the result of rational imitation using
a combination of social, physical, and statistical evidence as well as prior
knowledge. In particular, evidence for which actions are causally necessary
includes more than just the immediately observed demonstration. It also
includes children’s previous experiences with causal systems and objects,
their prior observations of bringing about the same effect, and social
information including the adult’s knowledge state, intentions, and peda-
gogical stance (we know that observing a helpful teacher versus a neutral
[Bonawitz et al., 2011; Brugger et al., 2007], ineffective [Schulz et al., 2008;
Want & Harris, 2001; Williamson et al., 2008], or naïve [Bonawitz et al.,
2011; Butler & Markman, in press] demonstrator changes children’s infer-
ences). If different imitative choices are the result of different evidence, then
we should be able to manipulate these choices and get children to imitate
different portions of the same action sequences by changing the combination
of social and physical evidence they receive.

Moreover, in many real-world situations, the causal structure of
a demonstrated sequence of actions is not fully observable, and which actions
are necessary and which are superfluous may be unclear. Therefore, there is
often no single “right answer” to the question of what to imitate. After all,
a longer “overimitation” sequence might actually be necessary to bring
about an effect, though that might initially seem unlikely. One way in which
children may overcome this difficulty is by using statistical evidence
provided by repeated observations of bringing about the effect. By watching
someone unlock and open a door or turn on a light bulb on multiple
occasions, children can detect which actions consistently predict the desired
outcome and which do not.

To test this prediction, we ran an experiment that manipulated the
statistical evidence children received from a series of demonstrated action
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sequences (Buchsbaum, Griffiths, Gopnik, & Shafto, 2011). We used
a Bayesian model to help us construct demonstration sequences that
normatively predict selective imitation in some cases and “overimitation” in
others. If children make rational inferences from variations in the action
sequences they observe, then their choice of whether to imitate only part of
an action sequence versus the complete sequence should similarly vary with
the evidence.

In this study, children watched a naïve informant (who claimed to have
no knowledge of how the toy worked) demonstrate five sequences of three
actions each on a toy (e.g., the experimenter squishing the toy, then shaking
it, and then rolling it would be one sequence). Some of these sequences but
not others led to the toy playing music. In the “ABC” data condition, the
same three actions (e.g., knock, shake, pull) always made the toy play music,
while in the “BC” data condition, the first action of the successful sequences
varied while the final two actions preceding the music stayed the same (e.g.,
knock, shake, pull, or squish, shake, pull, or roll, shake, pull would all be
followed by the toy playing music). Children either could exactly reproduce
one of the three-action sequences that had caused the toy to activate or
could just produce the final two actions in isolation.

Intuitively, it is more likely that all three-actions are necessary in the
“ABC” condition, while perhaps only the final two-actions are necessary in
the “BC” condition. However, both three-action and two-action sequences
reflect potentially correct hypotheses about what caused the toy to activate
in either condition. It could be that the last two-actions by themselves cause
the toy to activate in the “ABC” condition and the first is superfluous or it
could be that three-actions are necessary in the “BC” condition, but the first
action can vary. It is just the probability of these hypotheses that changes
between the two conditions. Our Bayesian model predicts just those
differences in probability.

If children automatically encode the adult’s successful actions as causally
necessary, then they should exclusively imitate three actions in both
conditions. However, if children are also using more complex statistical
information, then we expect that children in the “ABC” condition should
reproduce three actions more often than children in the “BC” condition and
that children in the “BC” condition might imitate the two-action subse-
quence by itself. This is, in fact, what we found – children imitated all three
actions almost exclusively in the “ABC” condition, while children in the
“BC” condition imitated much more variably, with a number of them
imitating the two-action subsequence, even though they had never seen it
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performed on its own and even though three actions would have also
activated the toy. Like adults in our first set of experiments, preschool
children used statistical patterns to identify causal subsequences within
longer sequences of action.

The particular model parameters that best fit children’s performance
also tell us something about children’s expectations going into this task.
The model suggested that children employ a causal Occam’s razor,
assuming that simpler hypotheses, which require fewer unique causal
sequences to explain the data, are more likely than more complex
hypotheses. The model also suggested that children were biased to imitate
the adult’s complete action sequence (though this bias could be over-
come), perhaps indicating a preexisting belief that adults usually do not
perform extraneous actions.

Children might make this “rational actor” assumption because they are
using information about the adult’s knowledgeability (e.g., Jaswal, 2006;
Kushnir et al., 2008), reliability (e.g., Koenig, Clément, & Harris, 2004;
Zmyj, Buttelmann, Carpenter, & Daum, 2010), and intentional stance
(Bonawitz et al., 2011; Butler & Markman, in press). For instance, children
might notice that the experimenter always performs three actions and infer
that the experimenter, while not knowing the exact causal sequence, knows
that it must be three actions long. We explored this possibility in a next
experiment, where we manipulated the intentional state of the demonstrator
rather than the statistics of the demonstration.

In our original study, the experimenter acted clueless, as if she did not
know anything about how the machine worked. In the next study, the
experimenter became a knowledgeable teacher. She told the children that
she was showing them how the machine worked – and then showed
them exactly the same sequences of actions as in the original “BC”
condition. Now, children were much more likely to “overimitate;” almost
all of them reproduced a complete sequence of three actions. So children
made different causal inferences depending on the social context. When it
was their turn to bring about the effect, children chose to reproduce more
of the demonstrated actions when the demonstrator was a knowledgeable
teacher than when she was naïve about the workings of the toy. Intui-
tively, children, like our model, understood that a helpful teacher would
only be demonstrating all these extra actions if they were in fact necessary
to make the toy work (see, e.g., Shafto & Goodman, 2008, for more
details on Bayesian models of inference from pedagogically versus non-
pedagogically selected data).
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These studies suggest that causal learning is informed by both social
knowledge and statistical information. Children are sensitive to probabili-
ties, knowledge state, and pedagogical intent when deciding which actions
to imitate. These studies also suggest a rational account of “overimitation.”
In particular, imitating three actions in these studies can be thought of as
a kind of overimitation, reproducing parts of a causal sequence that are not
actually demonstrably necessary for the effect. These results suggest that this
behavior varies depending on the statistics of the data and the probability of
various hypotheses concerning them. “Overimitation” also varies
depending on the social demonstrator. By explicitly representing the
contributions of these different sources of evidence and using them to
assign probabilities to causal hypotheses, a Bayesian model can predict these
behaviors quite precisely.

Many of the studies of imitation we discussed earlier in this section did
not provide the child with either clearly pedagogical or nonpedagogical
demonstrators. These demonstrators may have used cues such as directed
gaze and pointing (Csibra & Gergely, 2009; Gergely et al., 2007; Senju,
Csibra, & Johnson, 2008), leading children to assume that they were in
a teaching situation. In general, these studies also showed children only one
way to bring about the desired effect and used causal systems where chil-
dren’s prior expectations were unclear. These differences may help explain
why children’s imitative choices seem so varied across studies. This work also
suggests that despite appearances, such behavior is a rational response to
different combinations of social, statistical, and physical information. In
situations where causal structure is ambiguous, children not only take
advantage of social demonstrations, they use relevant information about the
demonstrators themselves to make causal inferences.

2.3. Causal Inference from Social Testimony
The previous experiments show that social observation influences children’s
causal reasoning. Children used the demonstrator’s intentional state to help
infer which actions were causally necessary to produce an effect. Presumably,
children in these experiments were learning not only about the causal system
but also about the causal demonstrator. What assumptions might children
have made about the value of the demonstrator as a social informant and how
might these assumptions guide children’s future interactions with that person?
In this section, we address these questions by investigating the influence of
a different type of social information: verbal testimony. What can we learn
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from other people’s causal statements about the world and what might the
world tell us about the reliability of those statements and thus, other people?

Much of what we know about theworld we learn fromwhat other people
tell us to be true. Our parents, teachers, and peers are continually providing us
with information about the causal structure and mechanisms of our environ-
ment (e.g., Callanan&Oakes, 1992).However, the role of verbal testimony in
causal learning is not obvious a priori. Cause and effect relationships can often
be inferred from direct observation without explicit instruction. Again, a child
could learn that turning a key in the lockmakes a door open because someone
said this is so, but a child could just as successfully learn this causal link simply by
observing someone turning a key and seeing the door open. So how might
children use informant testimony in the context of causal inference?

When what we hear corroborates what we observe, then testimony
should facilitate children’s causal understanding. However, as we discussed
in the introduction, the real world is stochastic and unpredictable, and
informants might be ignorant, mistaken, or even deceptive. What would
happen if the testimony children receive conflicts with what they see?
Would children choose one source to rely on or integrate information from
each to inform their causal judgments? To use testimony effectively, we
must know when it is prudent to trust others and when they are likely giving
inaccurate information. What would a conflict between testimony and
observation tell children about the credibility of their informant?

Young children have a strong bias to trust the testimony of others
(Jaswal et al., 2010). However, children are not entirely credulous. Just as
they can use patterns of evidence to make sophisticated judgments about
the relative strengths of different causes (e.g., Kushnir & Gopnik, 2005),
children can use patterns of past accuracy to make sophisticated judgments
about the relative credibility of different informants. Preschoolers are more
likely to trust future testimony from informants who have demonstrated
that they tend to be knowledgeable and accurate over that of informants
who have demonstrated ignorance and inaccuracy (e.g., Corriveau et al.,
2009; Koenig & Harris, 2005; Pasquini et al., 2007). This phenomenon is
referred to as selective trust (Koenig & Harris, 2005). Past accuracy is not
the only cue children rely on, however. As we saw in our studies of
children’s imitation, children also take the expressed confidence of the
informant into account and are more likely to trust the testimony of
informants who speak with confidence than informants who indicate that
they are unsure (e.g., Jaswal & Malone, 2007; Tenney, Small, Kondrad,
Jaswal, & Spellman, 2011).
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Informants are not only reporters about the world but also reporters of
their own knowledge states. Informants may be unreliable because they hold
mistaken beliefs about the world or because they hold mistaken beliefs about
the extent of their own knowledge. Thus, yet another cue children might
use to evaluate testimony is an informant’s level of self-knowledge: how
well their confidence predicts their accuracy (what Tenney et al., 2011, refer
to as calibration). Research on eyewitness testimony has suggested that
though children are sensitive to an informant’s confidence and past accuracy,
they are not sensitive to an informant’s level of self-knowledge, whereas
adults are attuned to all three cues (Tenney et al., 2011).

Some recent research has explored how children combine social infor-
mation with their observations when making causal inferences. This
research, including the studies on imitation in our lab, has found that just as
children consider testimony from certain informants more informative than
others based on past reliability, children find the interventions of certain
causal demonstrators more informative than others based on the social
information the demonstrators offer. For example, children favor the causal
interventions of a demonstrator who claims to be knowledgeable about the
causal system over those of a demonstrator who claims to be naïve (Kushnir
et al., 2008). Children also learn more from a disambiguating intervention
when the demonstrator supplies an explanation relevant to the causal
problem at hand than when the demonstrator supplies an irrelevant rationale
(Sobel & Sommerville, 2009). Additionally, children are better able to infer
causal strength from probabilistic data when the demonstrator acts surprised
by the anomalous outcomes (Sobel et al., 2009). Together this research
shows that children’s causal inferences are not solely determined by the
statistical evidence children observe but are also mediated by the social
information communicated by the demonstrator.

What happens, though, when the social information explicitly contrasts
with children’s observations? Howmight children handle a conflict between
what observed statistical data show and what an informant says? Further-
more, what inferences do children make about the reliability of an informant
based on the information they provide and the causal evidence children see?
In the following experiment (Bridgers, Buchsbaum, Seiver, Gopnik, &
Griffiths, 2011, 2012), we explored children’s causal and social inferences
when they were presented with a disagreement between an informant’s
statements and their own causal observations.

The experiment involved four between-subject conditions: the
knowledgeable conflict condition, the naïve conflict condition, the
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knowledgeable baseline condition, and the naïve baseline condition. In the
conflict conditions, we investigated how 3-, 4-, and 5-year-olds resolve
a conflict between the information provided by either a knowledgeable or
a naïve informant and by probabilistic causal demonstrations. In the baseline
conditions, we explored preschoolers’ baseline trust in a knowledgeable and
a naïve informant’s testimony in the absence of conflicting data. We describe
the conflict conditions first.

The knowledgeable and naïve conflict conditions had two within-
subject phases: the causal phase and the generalization phase. First, in the
causal phase, children were introduced to two blocks (the “causal” pair) and
a machine that lit up and played music when certain blocks were placed on
top. An informant explained to the children that one block was better at
activating the machine than the other. In the knowledgeable conflict
condition, the informant claimed to really know which block was better,
while in the naïve conflict condition, the informant said she was just
guessing. The informant then left the room, and a second, neutral experi-
menter demonstrated the blocks on the machine, providing probabilistic
evidence that in both conditions, challenged the informant’s statement: The
block endorsed by the informant was actually less causally efficacious,
statistically speaking, than the unendorsed block. The endorsed block only
activated the machine two out of six times, while the unendorsed block
activated it two out of three times (past research has shown that children can
correctly infer causal strength from this pattern of activation; see Kushnir &
Gopnik, 2007). Children were then asked to choose which block they
thought was better at activating the machine. Children were thus con-
fronted with an ambiguous situation in which they had to decide whether or
not the informant or perhaps their own observations were unreliable. In the
generalization phase, the informant returned with two novel blocks (the
“generalization” pair) and, in both conditions, claimed that she knew which
block was better at activating the machine. Last, children were asked by the
neutral experimenter to choose one of these new blocks to make the
machine go.

One might expect that when provided with contradictory verbal and
visual information, children would always trust what they directly see over
what they hear. However, children might instead rationally combine their
prior beliefs about the reliability of these types of sources with the evidence
to make a joint causal and social inference. In doing so, children would also
update their beliefs about the validity of both the informant’s testimony and
the observed causal data, which would affect their later inferences from these
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sources. Therefore, as in our previous experiments looking at children’s
causal imitation, we expected children’s inferences to vary with both the
social and the causal evidence.

Our results suggest just such an interaction. In the causal phase of the
naïve conflict condition, children overwhelmingly trusted the data and
chose the unendorsed block as better at activating the machine, while
children in the knowledgeable conflict condition were torn between the
two blocks. Thus, when there was strong evidence supporting the causal
efficacy of each block (the knowledgeable informant’s testimony for the
endorsed block and the causal observations for the unendorsed block),
children were at chance between inferring the endorsed or the unendorsed
block as the better cause. When the testimony was weaker (because the
informant was naïve), children favored the block that the causal data sug-
gested was better. Though the causal evidence was constant across condi-
tions, children put more confidence in the knowledgeable informant’s claim
than in the naïve informant’s guess and so were willing to believe the
informant over their own observations when she expressed certainty but not
when she expressed uncertainty. As predicted and again, as demonstrated in
our imitation experiments, children’s causal inferences about the same
pattern of causal data differed depending on the social context. These results
suggest that children combine informant testimony and causal data to infer
causal relations even when these cues conflict.

In the conflict conditions, the informants expressed different levels of
knowledge about the causal blocks initially but both were wrong in their
endorsements. Thus, in addition to different levels of claimed knowledge-
ability, the informants also had different levels of self-knowledge. Even
though both informants made incorrect predictions about the causal blocks’
relative causal strengths, the naïve informant actually demonstrated more
self-knowledge because she was aware that she did not know about the
blocks. The knowledgeable informant, on the other hand, was oblivious to
the fact that she was mistaken in her beliefs. Therefore, when both infor-
mants later say that they “know” about the generalization blocks, it is more
judicious to trust the previously naïve informant because she is more likely
to actually know about the causal system when she says that she does. Would
children be sensitive to this difference?

At first glance, the answer appears to be no. In the generalization phase,
there was no difference in performance across the two conditions; children
were equally likely to extend trust to the informant who was correctly
uncertain in her prior testimony as to the informant who was incorrectly

144 Daphna Buchsbaum et al.



certain. In both the knowledge and the naïve conflict conditions, children
were willing to trust the informant and intervened with the generalization
block she endorsed more often than the unendorsed block. Children’s
failure to selectively trust the naïve informant in the generalization phase
implies that, as earlier research has suggested, children are more sensitive to
an informant’s expressed knowledge level about the general world than to
her level of self-knowledge (e.g., Tenney et al., 2011).

However, there may be alternative explanations for children’s perfor-
mance in the generalization phase that do not assume that children entirely
lack a concept of self-knowledge. In the causal phase, the informant
endorses one block, while the causal data “endorse” the other. However, in
the generalization phase, though the informant endorses one of the new
blocks, there is no evidence about the second block. Since there is no
evidence directly contradicting the informant’s claim, there is a relatively
low cost in choosing to intervene with the endorsed generalization block
over the unendorsed one. Furthermore, the conflicting data observed in the
causal phase are probabilistic, suggesting that perhaps the causal data, rather
than the informant, are the unreliable information source. Maybe the
informant was correct about the relative efficacies of the causal blocks and
the particular pattern of causal data the children observed were merely
a fluke (for instance, the result of faulty wiring or battery failure) and
unrepresentative of the actual causal system. Additionally, children’s strong
tendency to trust testimony may have further convinced them to trust the
informant about the generalization blocks regardless of the conflict observed
and the informant’s prior knowledge state. In summary, given children’s bias
to believe testimony, their beliefs about the reliability of stochastic data, and
the low cost of intervening with the endorsed generalization block, children
could be sensitive to self-knowledge and still rationally trust both informants
more or less equally.

To help us better understand children’s performance in the generaliza-
tion phase of the conflict conditions, we need to consider the level of trust
that children place in a knowledgeable and a naïve informant’s causal
testimony when no conflicting causal data are present. In the knowledgeable
and naïve baseline conditions, children were told by either a knowledgeable
or a naïve informant, respectively, that one block was better than another at
making a machine go, without seeing any causal demonstrations of either
one. These two conditions are identical in structure to the generalization
phase of the two conflict conditions, but since there is no preceding causal
phase, children only have the informant’s current testimony to guide their
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intervention choice. We predicted that in general across both baseline
conditions, children would trust the informant but would be more likely to
do so when the informant expressed certainty than when she expressed
uncertainty. And that is basically what we found: A majority of children
chose to intervene with the endorsed block across both conditions though
slightly fewer did so when the informant was naïve.

We can compare children’s performance at baseline to their performance in
the generalization phase of the conflict conditions. In both situations, children
are presented with informant testimony endorsing one of two blocks but are
not given a chance to observe the blocks on the machine. However, in the
baseline conditions, children have no prior experience with the informants,
while in the generalization phase of the conflict conditions, children have
witnessed a disagreement between the informants’ earlier statements and the
causal data. If children’s trust in the informants is influenced by this conflict, we
would expect children to be less trusting of the informants in the generalization
phase of the conflict conditions than in the baseline conditions.Whenwemake
this comparison, we find that overall, more children intervened with the
endorsed block in the baseline conditions than in the generalization phase of
the conflict conditions, suggesting that children were in fact more willing to
trust the informants before observing a conflict between their testimony and
the causal data than afterward. Moreover, there was a greater decline in chil-
dren’s trust in the knowledgeable informant than in the naïve one. This may
indeed suggest that children are potentially sensitive to self-knowledge though
further research is necessary to test this claim.

This experiment confirms that children’s causal judgments are informed
by both social knowledge (in this case, testimony) and statistical data.
Additionally, these experiments provide us with further insight into how
children combine information from these sources. They demonstrate that
children do not entirely discount one source and privilege another when the
information from each conflicts. Rather children are evaluating, weighting,
and integrating information from both social and physical cues to guide their
inferences about both the causal system and the informant.

This situation lends itself particularly well to Bayesian modeling since
children are being asked to combine information from two probabilistic
sources and the disagreement between the two only adds to the complexity
and ambiguity of the information each source provides. We are developing
just such a model (Buchsbaum et al., in press) to better understand how
children might be relating testimony and direct observation in their social
and causal inferences (for a related model, see Eaves & Shafto, this volume).
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3. USING CAUSAL INFERENCE TO LEARN
ABOUT PEOPLE

The studies described in the preceding sections demonstrate how the social
domain can inform our inferences about physical causation and how the
causal outcomes of people’s actions can be used to make inferences about
both the causal structure of the physical world and the intentions, knowl-
edge, and reliability of the social demonstrator or informant. But as adults,
we not only make causal inferences about physical systems, we also make
extensive inferences about the causes of people’s behavior, a process termed
“attribution.” How do children reason about these psychological causes?
Does their reasoning about the causes of human behavior proceed along the
same lines as their reasoning about physical causation?

Even in the earliest years of life, babies are already making attributions
about other people and figuring out the causes of their behavior. For
example, even infants expect there to be different sources of movement for
physical objects and people (Saxe et al., 2005; Schult & Wellman, 1997;
Woodward, Phillips, & Spelke, 1993). In other studies, infants are capable of
even more sophisticated reasoning about others’ behavior; for example, they
expect that agents who help others reach their goal will be treated differently
than agents who hinder others’ progress and they also treat helpers and
hinderers differently themselves (Hamlin, Wynn, & Bloom, 2007;
Kuhlmeier, Wynn, & Bloom, 2003).

As children grow older, they show increasingly sophisticated under-
standing of such social constructs as in-groups and out-groups. Some more
sophisticated aspects of social cognition, however, do not seem to emerge
until much later in children’s development, in some cases not until the
school-age period (Rholes & Ruble, 1984; Ruble & Dweck, 1995). This
includes the propensity to causally explain human behavior in terms of
personality traits.

In particular, people explain the causes of human actions in different
ways. First, they may attribute a person’s actions to internal, individual, and
enduring characteristics (i.e., traits). An internal attribution places the cause
of behavior in the mind of the acting agent. To revisit the case of inter-
preting the opening of a door, we might see someone open a door and think
she did it because she is the kind of curious person who enjoys opening
doors. Second, people may attribute actions to external situations, circum-
stances, or other objects in the environment. An external attribution for
opening the door might be that it was a hot day outside or that the cat needs
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to be let in. These different styles of attribution have far-reaching conse-
quences; social psychologists have found that a preference for one type of
causal explanation and attribution affects other kinds of social cognition and
behavior, such as motivation, achievement, blame, mental health, and
general emotional well-being (e.g., Levy & Dweck, 1998), even in children
(Levy & Dweck, 1999; Patrick, Skinner, & Connell, 1993). Especially in
Western cultures, many adults have a bias to attribute the actions of others to
individual enduring traits of the person rather than to external situations
(Jones & Harris, 1967; Ross, 1977). Some researchers have suggested that
this is because these adults have developed an intuitive theory that explains
action in terms of such traits (Molden, Plaks, & Dweck, 2006; Morris &
Peng, 1994; Rosati et al., 2001). That theory might then bias the observer’s
interpretation of behavioral evidence toward favoring internal causes.

Where do these attributions come from? It is unclear when and why
children begin to explain action in terms of internal, individual, and
enduring traits. Even very young children explain action in terms of
internal mental states (Flavell, Flavell, Green, & Moses, 1990). However,
trait explanations include two additional factors beyond mental states
themselves – traits are specific to particular individual people, and they are
constant over time and across situations. Many researchers have demon-
strated that children do not spontaneously explain actions in terms of traits
or endorse trait explanations for a single instance of behavior until middle
childhood (Alvarez, Ruble, & Bolger, 2001; Peevers & Secord, 1973;
Rholes & Ruble, 1984; Shimizu, 2000). However, other studies show that
when preschoolers are given trait labels or behavioral frequency informa-
tion, they can use that information to make inferences about future
behavior and that they can infer the right trait label from frequent
behaviors (Boseovski & Lee, 2006; Ferguson, Olthof, Luiten, & Rule,
1984; Heyman & Gelman, 1999; Liu et al., 2007; Matsunaga, 2002). On
the other hand, these preschoolers still did not spontaneously construct trait
explanations; rather they simply matched the frequency of behaviors to
trait labels that were provided for them. This suggests that the failure to
attribute traits more broadly is not simply a problem with word compre-
hension or conceptual development.

More significantly, we do not know the learning mechanisms that
underlie the course of attribution in childhood and beyond. Kelley was one
of the first psychologists to suggest that person and situation covariation
evidence might play an important role in internal versus external attributions
(Kelley, 1967; Plaks, Grant, & Dweck, 2005). Empirical studies confirm that
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adults use statistical information tracking multiple people in multiple situ-
ations to make behavioral attributions (Cheng & Novick, 1990; Hewstone
& Jaspars, 1987; Morris & Larrick, 1995; Orvis, Cunningham, & Kelley,
1975; Sutton & McClure, 2001). However, adults already have intuitive
theories of action they can apply to the covariation data to interpret and
predict behavior. Could covariation play a role in the development of trait
attribution itself?

As we discussed earlier in this chapter, Bayesian causal learning theo-
ries, in particular, suggest that children make new rational inferences by
systematically combining prior knowledge and current covariation
evidence to arrive at the right causal hypothesis. This suggests a potential
mechanism for the development of attribution. Children may begin by
observing person and situation covariation evidence that confirms
a particular type of hypothesis, particularly the hypothesis that internal
traits cause actions. Once that theory has been highly confirmed, it will be
more difficult to overturn in the future, though it might still be over-
turned with sufficient evidence. Eventually, in adulthood, this may result
in a consistent “trait bias” that is difficult and thus requires a larger amount
of contrary evidence to overcome.

In a series of studies, we examined the developmental origins of Kelley’s
social schemas. We integrated research on the development of causal
inference and trait attribution to see if the same domain-general machinery
children used to learn about physical causation in our experiments on causal
imitation and causal testimony might also underlie their reasoning about
psychological causation.

3.1. Reasoning about Psychological Causes
First, Seiver, Gopnik, and Goodman (in press) conducted a study where 4-
and 6-year-old children observed a scenario of two dolls playing on two
activities (chosen from a bicycle, trampoline, and diving board). Children
were either in the doll condition (where the two doll characters acted
consistently on the two activities and differently from each other) or in the
toy condition (where both dolls played on one toy activity and did not play
on the other). The children in each condition received different covariation
information about the person and situation while still observing the same
overall frequency of playing and not playing. At the end, we asked the
children to explain the dolls’ actions (e.g., “Why did Josie play on the
bicycle?”) and predict their behavior in a future situation.
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In the doll condition, one doll always plays and the other doll never
plays. This evidence suggests that something about the individual rather than
the situation is responsible for their behavior. In the toy condition, the two
characters never play on one toy and always play on the other, suggesting
instead that the situation or the toy itself is responsible for their actions. So
how would children explain the dolls’ behavior in these two different
conditions? Four-year-olds more closely tracked the behavioral data than 6-
year-olds and offered explanations that matched the data. For example, in
the doll condition, when the overall pattern of behaviors indicated that
something about the person was responsible for the dolls’ behavior, both 4-
and 6-year-olds gave internal explanations for their behavior – explanations
about the person, including physical characteristics such as age or height or
mental states such as desires and beliefs. However, in the toy condition,
when the data indicated that the situations were driving the dolls’ actions
(i.e., they both played on one activity and did not play on the other), 4-year-
olds appropriately gave more external explanations – explanations involving
the environment or the specific toy activity – but 6-year-olds persisted in
giving internal explanations. This difference in attribution style between the
two age groups in the toy condition suggests that the 4-year-olds were more
sensitive to the covariation data than the 6-year-olds. Further evidence
included a control condition where children were asked to explain why
a single doll did or did not play on a single activity. In this case, the data are
ambiguous about the possible cause of the behavior. In the control condi-
tion, 6-year-olds gave internal explanations significantly more often than
chance and 4-year-olds were, correctly, at chance.

The prediction question provided additional evidence for 6-year-olds’
preference for internal causes. In the doll condition, children were asked
to predict whether each doll would play or not play on a new toy. Both
4- and 6-year-olds generalized from the previous pattern of data and said
that the doll who had played before would play on the new toy and the
doll who did not play before would continue to refrain from playing. In
the toy condition, children were asked to predict whether a new doll
would play or not play on the same two toys. Four-year-olds again
accurately assessed the data and said she would play on the toy the other
dolls played on but would not play on the one that they backed away
from. Six-year-olds, on the other hand, did not predict consistent
behavior in this case.

This provides further evidence for age differences in children’s behavioral
causal inference. Four-year-olds predicted the pattern of playing and not
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playing would be consistent in the future, irrespective of whether it favored
internal or external attributions. Six-year-olds thought that only the
behavioral data that supported internal attributions would generalize to
future behavior.

This pattern of results suggests that 6-year-olds have developed a specific
prior attributional theory that the internal qualities of a person, rather than
the situation, drive their behavior. Six-year-olds seem to have developed
expectations about the source of people’s actions, so when they are asked to
explain the cause of a person’s behavior, 6-year-olds use both the actual
evidence at hand and their prior beliefs to arrive at a conclusion. The 4-year-
olds, in contrast, seem to use a more general “bottom-up” data-based
strategy and only use the most immediately available data to draw
conclusions.

How domain specific or how general is this higher-order bias? Would it
only be applied to the case of psychological causation or would children
reason similarly about internal versus external causes of physical outcomes?
Studies with adults suggest that there is a relationship between cultural
attributional biases and seemingly unrelated views about physical causes.
Some studies have shown in adults that culturally based attributional biases
affect scientific reasoning (e.g., Morris & Peng, 1994). Even though
culturally based differences may be rooted in social cognition, they also cause
differences in reasoning about simple Newtonian physics. Westerners, for
example, who have a stronger social trait bias, are also more likely to
attribute causal power to individual physical objects rather than to rela-
tionships or forces.

3.2. From People to Magnets
To explore potential attributional biases in understanding physical causation,
we replicated the previous study with children but changed the outcome of
interest to a physical rather than psychological one – “stickiness” instead of
willingness to play. Without changing the task in any other way, we altered
the cover story to implicate physical instead of psychological causation.
Thus, rather than saying that the doll character was playing on the scooter,
we would say that the doll was sticking to the scooter. The relevant
explanatory question then became “Why did the Josie doll stick to the
scooter?” We again divided children’s responses into two categories. In
“internal” responses, children talked about the properties of the doll. In
“external” responses, they talked about properties of the toy.
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When we made this small modification, changing the language used to
describe the dolls to be physical rather than agentive, 6-year-olds lost their
overall preference for internal explanations. Moreover, for predicting future
sticking or not sticking, 6-year-olds now reliably extended the data pattern
in both conditions. That is, they were willing to use the most recently
available data to make causal inferences instead of relying on their prior
beliefs.

Four-year-olds, however, still gave more accurate explanations than
6-year-olds – they continued to follow the data pattern more closely and
gave more internal explanations in the doll condition and external expla-
nations in the toy condition. Closer examination of the results suggests that
once again the 6-year-olds had shifted from largely relying on the data to
relying instead on a prior bias. Unlike in the original psychological case,
however, the 6-year-olds gave explanations in terms of a rather different
everyday causal theory – namely, magnetism. They often appealed to the
scientific properties of magnetism, such as the relationship between magnets
and metal, in their explanations. They also were more likely to give inter-
active causal explanations that implicated both the doll and the toy as causes
for the outcome (e.g., “she has metal shoes and the skateboard is a magnet”).
Children never produced these interactive explanations in the social case,
and 4-year-olds rarely produced them in the physical case. These explana-
tions suggest that the 6-year-old children relied on a deeper and more
scientifically based causal framework about stickiness and magnetism, in
particular, rather than relying on the data. Four-year-olds tended to give
more vague answers such as “she has sticky stuff on her feet” and were less
sophisticated in terms of appealing to physical mechanisms and magnets.
However, they again tracked the data more accurately, perhaps due to this
less sophisticated understanding of magnetism’s interactive properties, and
therefore weaker prior beliefs.

3.3. Cross-Cultural Studies
We are also conducting versions of these studies in Beijing, China, to
compare children’s beliefs about psychological causes across cultures.
Research with adults shows that broadly speaking, the cultural preference
for trait explanations in the United States is not present in Chinese culture
(e.g., Morris & Peng, 1994). If there is truly a cultural difference in prior
expectations about the causes of people’s actions, then 6-year-olds in
a non-trait-biased culture should not perform the same way as the American
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6-year-olds; that is, 6-year-olds in China should not show a bias favoring
internal explanations. Although the data collection is still ongoing,
preliminary results suggest that 6-year-olds in Beijing have a similar
expectation in the control condition, where the data does not support an
internal or an external explanation, to American (and Chinese) 4-year-olds.
They are at chance for preferring internal or external explanations. These
findings suggest that by the age of 6, children’s prior beliefs about others’
behavior are influenced by culture and these attributional styles shape their
interpretation of new behavioral information.

4. CONCLUSIONS

Taken together, the studies in this chapter show how the tools of
probabilistic modeling and Bayesian learning can be applied to the social as
well as the physical domain and how the physical and social domains can
jointly inform each other. When children learn about causes from other
people, whether through demonstration or testimony, they appear to
integrate their prior hypotheses about pedagogy, cues to informant reli-
ability, and the statistical evidence they observe from people’s actions.
Children are sensitive to the pedagogical intent of a demonstrator and can
use this information to aid their decisions about which of the demonstrator’s
actions to imitate in order to bring about an effect. Similarly, children can
use an informant’s statements to help them evaluate the data produced by
a causal system and likewise can use these data to evaluate the credibility of
the testimony produced by an informant. They also can use covariation
information to decide whether a situational or psychological cause is a better
explanation for a person’s behavior and take into consideration whether the
event involves people or just physical objects. Together, these studies
demonstrate that causal reasoning and social reasoning are linked, both in the
real world and in children’s minds. When children reason about physical
causal systems, they are incorporating social information, and when children
reason about seemingly purely social issues like personality trait attribution,
they are applying the same causal reasoning that they use for physical
systems.

The rational constructivist approach can help us understand how chil-
dren resolve, and even benefit from, multiple sources of ambiguous and
probabilistic data, and social data, in particular, in order to solve challenging
causal learning problems. And because these data are often probabilistic,
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Bayesian models help us describe the complex, uncertain, joint inferences
about the nature of both other people and the world that underlie our ability
to learn from others. At the same time, the work on attribution shows how
similarly complex integrations between prior knowledge and current
statistics can lead children to understand the actions of others in a new way.
In fact, we can construe the information we get from people, either in the
form of testimony or observable actions, as causal information. These studies
suggest that children use covariation evidence to construct abstract causal
schemas that they then employ to explain the behavior of both the people
and the objects around them.

The studies on imitation and pedagogy, in particular, suggest that we
would be wise to fully consider the social environment when looking at
children’s physical causal reasoning. The degree of confidence that the social
demonstrator has, and the level of authority they convey to the child, might
not just socially influence the child to feel pressured to respond in a certain
way but also might actually change their inferences about the physical causal
events they are observing. In fact, incorporating this social evidence into
causal reasoning is a rational response, especially in the face of uncertainty.
Therefore, to get a complete picture of how children understand the causal
landscape of both the physical and the social worlds we need to understand
how they use the entire rich set of data they encounter in the real world.
Studies directly manipulating social information, such as how pedagogically
the demonstrator is behaving and how much certainty she expresses, inte-
grate the human element into experiments that model causal understanding.

Future research should computationally address how children develop
priors about the causes and results of people’s behavior and of the social
information they provide. What leads children to believe that a person is an
expert, and what process guides their assumptions based on that attribution?
What are the components of children’s pedagogical understanding, and
what prior beliefs do children have about the likely causes and effects of
pedagogical behavior? How do children integrate data about people’s beliefs
(via testimony) and actions when making attributions about people’s
behavior? How do children conceptualize people causing changes in other
people’s beliefs or actions? What are children’s prior beliefs about person-to-
person causes, and how would they parse these events? Furthermore, how
would they integrate physical causes into those judgments?

The studies in this chapter begin to show how we can move beyond
basic laboratory problems, like determining the causal structure of blicket
detectors, to more complex inferences that more closely mirror the real
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world. The probabilistic models approach can be applied to real and
ecologically significant kinds of conceptual change. It sheds new light on
classic topics in cognitive development such as the nature of imitation and
trait attribution. Instead of looking at how children evaluate individual or
isolated events, we can more appropriately study how children learn in and
from the complex social–physical environment that makes up the world
around them.
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Abstract

Probabilistic models of cognitive development indicate the ideal solutions to
computational problems that children face as they try to make sense of their envi-
ronment. Under this approach, children’s beliefs change as the result of a single
process: observing new data and drawing the appropriate conclusions from those data
via Bayesian inference. However, such models typically leave open the question of what
cognitive mechanisms might allow the finite minds of human children to perform the
complex computations required by Bayesian inference. In this chapter, we highlight
one potential mechanism: sampling from probability distributions. We introduce the
idea of approximating Bayesian inference via Monte Carlo methods, outline the key
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ideas behind such methods, and review the evidence that human children have the
cognitive prerequisites for using these methods. As a result, we identify a second factor
that should be taken into account in explaining human cognitive developmentdthe
nature of the mechanisms that are used in belief revision.

1. RATIONAL RANDOMNESS

Over the past 10 years, probabilistic approaches to cognitive devel-
opment have become increasingly prevalent and powerful. These
approaches can be seen as a computational extension of the “theory
theory”dthe idea that children’s learning is similar to learning in science. In
both cognitive development and science, learners begin with beliefs about
the world that are gradually, but rationally, revised in the light of new
evidence. Probabilistic models provide a way of characterizing both these
beliefsdas structured models of the worlddand the process of belief
revision.

In this chapter, we will describe recent work that addresses two problems
with the probabilistic approach. One is what we will call the “algorithm
problem.” Probabilistic approaches to cognitive development, like rational
models in general, began with a computational level analysis. Researchers
have shown that, given particular patterns of evidence, children draw ratio-
nally normative conclusions.However, this raises the questionof exactlywhat
computations or algorithms children’s minds might perform to yield those
answers. This problem is particularly important because some of the most
obvious possible procedures, such as enumerating each possible hypothesis
and checking it against the evidence, are clearly computationally intractable.

The other problem is what we will call the “variability problem.”When
we ask a group of children a question, typically they will produce a variety of
answers. When we say that 4-year-olds get the rationally “right” answer,
what we really mean is that more of them produce the correct answer than
we would expect by chance. Moreover, individual children characteristically
will give different answers to the same question on different occasions. They
show lots of variability in their individual behavior; their explanations often
appear to randomly jump from one idea to the next rather than linearly
converging on the correct beliefs (Piaget, 1983; Siegler, 1996). We can
witness this same kind of apparently random variability in children’s play and
informal experimentation. Rather than systematically acting to test one
hypothesis at a time, children appear to veer at random from one kind of test
to another (Chen & Klahr, 1999; Inhelder & Piaget, 1958).
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This variability was one of the factors that originally led Piaget to describe
young children’s behavior as irrational. Indeed, such findings have led some
researchers to suggest that children’s behavior is always intrinsically variable
and context dependent (e.g., Greeno, 1998; Lave &Wenger, 1991; Thelen &
Smith, 1994). Thiswould seem tomake children’s learning very different from
the kind of systematic and rational hypothesis testing we expect from science.

In this chapter, we will argue that the solutions to these two problems,
the algorithm problem and the variability problem, are related. Sampling
from a probability distribution, rather than exhaustively enumerating
possibilities, is a common strategy in algorithms for Bayesian inference used
in computer science and statistics. There are many different sampling
algorithms, but all of them have the feature that only a few hypotheses are,
or even a single randomly selected hypothesis is, tested at a time. It can be
shown that in the long run, an algorithmic process of this kind will
approximate the ideal Bayesian solution to the search problem.

First, we will argue that the idea of sampling, in general, helps make sense
of children’s variability. We will argue that the way children act is consistent
with a rational account of belief revision and only seems irrational because our
intuitions about what an ideal learner should look like do not take into
account the complexity of the inferences that children need to make and the
algorithmic procedures they use to make them. In particular, systematic
variability is a hallmark of sampling processes. By thinking about how chil-
drenmight use effective algorithmic strategies for making such inferences, we
come to see these apparently irrational behaviors in a different light. We are
starting to show empirically that children’s variability is, in fact, systematic in
just the way wewould predict if they were using a sampling-based algorithm.

Second, we will describe two particular psychologically plausible
sampling algorithms that can approximate ideal Bayesian inferencedthe
Win-Stay, Lose-Shift (WSLS) procedure, and a variant of the Markov Chain
Monte Carlo (MCMC) algorithm. We will show empirically that, in
different contexts, children may use something like these algorithms to make
inferences about the causal structure of the world.

2. THE ALGORITHM PROBLEM AND MARR’S LEVELS
OF ANALYSIS

Marr (1982) identified three distinct levels at which an information-
processing system can be analyzed: the computational, algorithmic, and
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implementational levels. We will focus on the computational and algorithmic
levels here. (The implementational level, which answers the question of
how the system is physically realizedde.g., what neural structures and
activities implement the learning processes described at the algorithmic
leveldwarrants focus in future work.) We will first give a brief overview of
the computational and algorithmic levels and then delve more deeply into
the specific algorithms young learners may be using.

2.1. Computational Level
Marr’s computational level focuses on the computational problems that
learners face and the ideal solutions to those problems. For example,
Bayesian inference provides a computational-level account of the inferences
people make when solving inductive problems, focusing on the form of the
computational problem and its ideal solution. Bayesian models are useful
because they provide a formal account of how a learner should combine
prior beliefs and new evidence to change her beliefs.

In Bayesian inference, a learner considers how to update her beliefs (or
hypotheses, h) given some observed evidence (or data, d). Assume that the
learner has different degrees of belief in the truth of these hypotheses before
observing the evidence and that these degrees of belief are reflected in
a probability distribution p(h), known as the prior. Then, the degrees of belief
the learner should assign to each hypothesis after observing data d are given
by the posterior probability distribution p(hjd) obtained by applying Bayes’
rule:

p
�
h
��d
� ¼ pðdjhÞpðhÞ

P
h0˛Hp

�
d
��h0

�
p
�
h0
�; [6.1]

where p(djh) indicates the probability of observing d if h were true and is
known as the likelihood.

An important feature of Bayesian inference is that it does not just yield
a single deterministically correct hypothesis given the evidence. Instead,
Bayesian inference provides an assessment of the probability of all the
possible hypotheses. The “prior” distribution initially tells you the proba-
bility of all the possible hypotheses. Each possible hypothesis can then be
assessed against the evidence using Bayes rule. This produces a new distri-
bution of less likely and more likely hypotheses. Bayesian inference proceeds
by adjusting the probabilities of all the hypotheses, the distribution, in the
face of new data. It transforms the “prior” distribution you started
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withdyour degrees of belief in all the possible hypothesesdinto a new
“posterior” distribution. So, in principle, Bayesian inference not only
determines which hypothesis you think is most likely but also changes your
assessment of all the other less likely hypotheses.

The idea that inductive inference can be captured by Bayes’ rule has been
applied to a number of different aspects of cognition, demonstrating that
people’s inferences are consistent with Bayesian inference in a wide range of
settings (e.g., Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Griffiths
& Tenenbaum, 2009; Kording & Wolpert, 2004; Weiss, Simoncelli, &
Adelson, 2002; Xu & Tenenbaum, 2007). People do seem to update their
beliefs given evidence in the way that specific Bayesian models predict.

Bayesian models have proved especially helpful in understanding how
children might develop intuitive theories of the world. We can think of
intuitive theories as hypotheses about the structure of the world, particularly
its causal structure. Causal graphical models (Pearl, 2000; Spirtes, Glymour,
& Schienes, 1993) and more recently hierarchical Bayesian models
(Tenenbaum, Griffiths, & Kemp, 2006) provide particularly perspicuous
representations of such hypotheses. In particular, by making explicit and
systematically relating the structure of hypotheses to probabilistic patterns of
evidence, Bayesian causal models can establish the probability of particular
patterns of data given particular hypotheses. This means that Bayesian
inference can then be used to combine prior beliefs and the likelihood of
newly observed evidence given various hypotheses to update the probability
of hypothesesdmaking some beliefs more and others less likely.

In fact, there is now extensive evidence that this computational approach
provides a good explanatory account of how children infer hypotheses about
causal structure from evidence. We can manipulate the evidence children
see about a causal system as well as their beliefs about the prior probability of
various hypotheses about that structure and see how this influences their
inferences about that system. Quite typically children choose the hypotheses
with the greatest posterior probability in Bayesian terms (Bonawitz, Fischer,
& Schulz, in press; Bonawitz, et al., 2012; Goodman et al., 2008; Gopnik,
Sobel, Schulz, & Glymour, 2001; Gopnik et al., 2004; Kushnir & Gopnik,
2005, 2007; Lucas, Gopnik, & Griffiths, 2010; Schulz, Bonawitz et al, 2007;
Schulz, Gopnik et al, 2007; Sobel, Tenenbaum, & Gopnik, 2004).

However, the finding that the average of children’s responses looks like
the posterior distributions predicted by these rational models does not
necessarily imply that learners are actually carrying out the calculation
instantiated in Bayes’ rule at the algorithmic level. Indeed, given the
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computational complexity of exact Bayesian inference, this would be
impossible. So, it becomes interesting to ask how learners might be behaving
in a way that is consistent with Bayesian inference.

2.2. Algorithmic Level
Marr’s algorithmic level asks how an information-processing system does
what it does; for example, what cognitive processes do children use to
propose, evaluate, and revise beliefs? The computational level has provided
an important perspective on children’s behavior, affording interesting, and
testable qualitative and quantitative predictions that have been borne out
empirically. But it is just the starting point for exploring learning in early
childhood. Indeed, considering other levels of analysis can help to address
significant challenges for Bayesian models of cognitive development.

In particular, most computational-level accounts do not address the
problem of search. For most problems, the learner cannot actually consider
every possible hypothesis, as it would be extremely time-consuming to
enumerate and test every hypothesis in succession. Researchers in artificial
intelligence (AI) and statistics have raised this concern, showing that given
complex problems and the time constraints of real-world inference, full
Bayesian inference quickly becomes computationally intractable (e.g.,
Russell & Norvig, 2003). Thus, rational models raise questions about how
a learner might search through a (potentially infinite) space of hypotheses: If
the learner simply maximized, picking out only the most likely hypothesis to
test, she might miss out on hypotheses that are initially less likely but actually
provide a better fit to the data. This problem might appear to be particularly
challenging for young children who, in at least some respects, have more
restricted memory and information-processing capacities than adults
(German & Nichols, 2003; Gerstadt, Hong, & Diamond, 1994).

Applications of Bayesian inference in computer science and statistics
often try to solve the computational problem of enumeration and evalu-
ation of the hypothesis space by sampling a few hypotheses rather than
exhaustively considering all possibilities. These approximate probabilistic
calculations use what are called “Monte Carlo” methods. A system that
uses this sort of sampling will be variabledit will entertain different
hypotheses apparently at random. But this variability will be systematically
related to the probability of the hypothesesdmore probable hypotheses will
be sampled more frequently than less probable ones. The success of Monte
Carlo algorithms for approximating Bayesian inference in computer
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science and statistics suggests an exciting hypothesis for cognitive devel-
opment. The algorithms children use to perform inductive inference might
be similarly based on sampling from the appropriate probability
distributions. We explore this “Sampling Hypothesis” in detail in the
remainder of the chapter.

The Sampling Hypothesis provides a way to reconcile rational reasoning
with variable responding, and it has the potential to address both the
algorithmic and the search problem. It also establishes an empirical research
program in which we look for the signatures of sampling in general and of
specific sampling algorithms in particular in children’s behavior.

3. APPROXIMATING BAYESIAN INFERENCE
WITH MONTE CARLO METHODS

Monte Carlo algorithms include a large class of methods that share the same
general pattern. They first define the distribution that samples will come
from, then randomly generate the samples, and finally aggregate the results.
The goal is usually to approximate an expectation of a function over
a probability distribution (e.g., the mean of the distribution or the proba-
bility that a sample from the distribution has a particular property); that is, an
approximation of the distribution is given by summing over all the different
individual samples generated during the MCMC process.

The simplest Monte Carlo methods directly generate samples from the
probability distribution in question. For example, if you wanted to know the
mean of the distribution that assigns equal probability to the numbers 1
through 6, you could calculate the exact mean by averaging over each
probability for each value (1 through 6). Monte Carlo methods provide an
alternative to numerically computing the mean: instead, you could imagine
rolling a fair die to generate samples from this distribution, tracking the
results of each roll, and then averaging the results together. This process
would let you uncover an important fact about the distribution without
having to numerically calculate the probability of each possible outcome
individually. Although in this example, it would be relatively trivial to
numerically compute the exact mean, Monte Carlo sampling provides an
alternative approach that can be used when the distributions become harder
to evaluate, such as considering the product of multiple dice rolls. When the
probability distributions we want to sample from get even more complex,
more sophisticated methods need to be used to generate samples. In
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particular, it can quickly become computationally intractable to take samples
directly from the posterior distribution itself, so various Monte Carlo
algorithms have been developed to best approximate these different kinds of
complexity.

Monte Carlo algorithms for approximating Bayesian inference are thus
methods for obtaining the equivalent of samples from the posterior distri-
bution without computing the posterior distribution itself. One class of
methods, based on a principle known as importance sampling, generate
hypotheses from a distribution other than the posterior distribution and then
assigns weights to those samples (akin to increasing or decreasing their
frequency) in order to correct for the bias produced by using a different
distribution to generate hypotheses (see Neal, 1993, for details).

The strategy of sampling from other known distributions and then
updating the sample to correct for bias can also be used to develop algo-
rithms for probabilistically updating beliefs over time. For example, in
a particle filter (see Doucet, de Frietas, & Gordon, 2001, for details),
hypotheses are generated based on a learner’s current beliefs and then
reweighted to reflect the evidence provided by new observations. This
provides a way to approximate Bayesian inference that unfolds gradually
over time, with only a relatively small number of hypotheses being
considered at any one instant.

Another class of Monte Carlo methods makes use of the properties of
Markov chains. These Markov chain Monte Carlo algorithms, such as the
Metropolis Hastings algorithm, explore a posterior probability distribution
in a way that requires only a single hypothesis to be considered at a time (see
Gilks, Richardson, & Spiegelhalter, 1996, for details). In these algorithms,
a learner generates a hypothesis by sampling a variant on his or her current
hypothesis from a “proposal” distribution. The proposed variant is compared
to the current hypothesis, and the learner stochastically selects one of the
two hypotheses. This process is then repeated, and the learner gradually
explores the space of hypotheses in such a way that each hypothesis will be
considered for an amount of time that is proportional to the posterior
probability of that hypothesis.

Overall, Monte Carlo methods have met with much success in exploring
posterior distributions that are otherwise too computationally demanding to
evaluate (see Robert & Casella, 2004, for a review). Recent work by
Griffiths and Colleagues has explored how Monte Carlo methods can be
used to develop psychological models that incorporate the cognitive-
computational limitations that adult learners face. Some empirically
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generated psychological process models turn out to correspond to the
application of Monte Carlo methods. For example, Shi, Feldman, and
Griffiths (2008) showed that importance sampling corresponds to exemplar
models, a traditional process-level model that has been applied in a variety of
domains. Sanborn, Griffiths, and Navarro (2010) used particle filters to
approximate rational statistical inferences for categorization. Bonawitz and
Griffiths (2010) show that importance sampling can be used as a framework
for analyzing the contributions of generating and then evaluating
hypotheses.

Other research supports the idea that adults may be approximating ideal
solutions through a process of sampling. For example, adults, like children,
often generate multiple answers to a question. If you ask adults how many
beans are in a large jar, they will provide a range of responses. A classic
result shows that the averaged result of many such responses converges on
the right answer, even though any individual guess may be very far from
the correct mean (“The Wisdom of Crowds”; Galton, 1907; Surowiecki,
2004). The same effect holds even when a single person makes multiple
guesses, supporting the idea that (adult) individuals are not simply
providing their best guess but rather are sampling from a distribution (Vul
& Pashler, 2008). Related work suggests that people often base their
decisions on just a few samples (Goodman et al., 2008; Mozer, Pashler, &
Homaei, 2008), and in many cases, an optimal solution is to take only one
sample (Vul, Goodman, Griffiths, & Tenenbaum, 2009). These results
suggest that adults may be approximating probabilistic inference through
psychological processes that are equivalent to sampling from the posterior.
That is, the learner need not compute the full posterior distribution in
order to sample responses that still lead to an approximation of the
posterior. Here, we use “sampling from the posterior” to entail any
sampling processes that produce equivalent samples, without necessarily
requiring the learner to compute the full posterior.

These processes that approximate the full posterior are consistent with
what we have termed the Sampling Hypothesis. The signature of sampling-
based inferences is the fact that apparently random guesses actually reflect the
probability of the hypotheses they embody. Each person may produce
a different hypothesis about the outcome of two dice rolls on a different
occasion, but hypotheses that are closer to correctdthat is those that have
a higher probability in the posterior distributiondwill be more likely to be
produced than those that are less likely. If two fair dice are rolled, the most
likely outcome is 7; however, people generate a range of guesses with
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varying probability. Guesses of 6 or 8 will be five times more likely to be true
than guesses of 2 or 12. The Sampling Hypothesis predicts that human
beings are also five times more likely to produce those guesses; indeed, it
predicts that the probability that an individual will guess any particular
outcome will match the probability of generating that outcome under the
true distribution.

4. THE SAMPLING HYPOTHESIS AND CHILDREN’S
INFERENCES

Might children’s inferences be consistent with the Sampling Hypothesis?
The first step in exploring this claim is to see whether children produce
responses that are consistent with Bayesian inference in general. The second
step is to see whether children produce behaviors that are consistent with
sampling in particular. In order to demonstrate that children’s responding is
consistent with Bayesian inference, we must demonstrate that children are
sensitive both to their prior beliefs and to the evidence they observe. As we
described above, many studies show that children choose the probabilisti-
cally most likely hypothesis, but to truly test the prediction that children are
sensitive to posterior distributions, then children’s responses should change
when both their prior beliefs and the probability of the evidence are
independently manipulated. We highlight a few studies that suggest children
produce responses consistent with Bayesian inference. We then briefly
discuss alternatives to the sampling hypothesis. Finally, we turn to more
detailed empirical evidence supporting the claim that children sample
responses.

4.1. Preschoolers Producing Responses Consistent
with Bayesian Inference
Before we are able to identify whether children sample responses in a way
that approximates a posterior distribution, we must first demonstrate that
children’s responses are consistent with those distributions. Schulz,
Bonawitz, et al. (2007) presented preschoolers with stories pitting their
existing theories against statistical evidence. Each child heard two stories in
which two candidate causes co-occurred with an effect. Evidence was
presented in the form: AB/ E, AC/ E, AD/ E, etc. In one story, all
variables came from the same domain; in the other, the recurring candidate
cause, A, came from a different domain (A was a psychological cause of
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a biological effect). After receiving this statistical evidence, children were
asked to identify the cause of the effect on a new trial. Consistent with the
predictions of the Bayesian framework, both prior beliefs and evidence
played a role in children’s causal predictions. Four-year-olds were more
likely to identify “A” as the cause after observing the evidence than at
Baseline. Results also revealed a role of theories in guiding children’s
predictions. All children were more likely to identify A as the cause within
domains than across domains.

A particularly interesting empirical feature of this study is that because
Schulz et al. had a measure of children’s prior beliefs at baseline, they could
demonstrate that proportionally the children’s responses (after having
observed the evidence) were consistent with posterior distributions pre-
dicted by Bayesian models. That is, after observing the evidence, some
children endorsed hypothesis “A” and others endorsed the other hypothesis.
The proportion of children who favored “A” was the probability of “A”
being the actual cause, given the prior beliefs of the children and the
evidence observed. For example, when the posterior predicted 80% prob-
ability for hypothesis “A,” then results revealed about 80% of the children
choosing “A”.

Other studies reveal children producing graded responses to evidence
reflecting Bayesian posteriors (Bonawitz & Lombrozo, in press; Kushnir &
Gopnik, 2005, 2007; Sobel et al., 2004). For example, Bonawitz and
Lombrozo (in press) investigated whether young children prefer explana-
tions that are simple, where simplicity is quantified as the number of causes
invoked in an explanation, and how this preference is reconciled with
probability information. Preschool-aged children were asked to explain an
event that could be generated by one or two causes, where the probabilities
of the causes varied across several conditions. Children preferred explana-
tions involving one cause over two but were also sensitive to the probability
of competing explanations. That is, as evidence gradually increased favoring
the complex explanation, the proportion of children favoring the complex
explanation also increased. These data provide support for a more nuanced
sensitivity to evidence. When evaluating competing causal explanations,
preschoolers are able to integrate evidence with their prior beliefs (in this
case employing a principle of parsimony like Occam’s razor as an inductive
constraint). However, because children’s prior beliefs were not indepen-
dently evaluated, it is difficult to say whether the proportion of responses
generated by children in these studies matched a true posterior distribution
predicted by a Bayesian model.
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4.2. Alternatives to Sampling
The studies above suggest that children are sensitive to evidence in ways
predicted by Bayesian inference; at least, a proportion of children select the
hypothesis that is best supported by the evidence and their prior beliefs.
There is also variability in children’s responsesdthe proportion of times that
they select a hypotheses increases as the hypothesis receives more support,
but they will still sometimes produce an alternative hypothesis. But does that
mean that children are sampling their responses from a posterior distribu-
tion? It might instead be that the variability in the children’s responses is
simply the effect of noisedin fact, this is the most common, if generally
implicit, assumption in most developmental studies. This noise could be the
result of cognitive load, context effects, or methodological flaws that lead
children to stochastically produce errors. For example, in the Schulz,
Bonawitz, et al. (2007) study, all the children might indeed be choosing the
most likely hypothesis on each trial, always preferring the within-domain or
cross-domain answer. But they might fail to express that hypothesis correctly
because of memory or information-processing or communication problems.
We call this alternative the Noisy Maximizing alternative to the sampling
hypothesis.

Another alternative is that children’s behavior does reflect the proba-
bility of hypotheses but does so through the result of a simpler process than
sampling from the posterior. Consider a similar though simpler phenom-
enon that can be found in a much older literature. Children, like adults and
even nonhuman animals, frequently produce a pattern called probability
matching in reinforcement learning (e.g., Jones & Liverant, 1960). If
children are rewarded 80% of the time for response “A” but 20% of the
time for response “B,” they are likely to produce “A” 80% of the time and
“B” 20% of the time. If these responses reflect an implicit hypothesis about
the causal power of the action (“A” will cause the reward), this probability
matching looks a lot like the behavior in the more explicitly cognitive
causal learning tasks. It might, however, simply be the result of a strategy
we will call “Naïve Frequency Matching.” Children using this strategy
would simply match the frequency of their responses to the frequency of
the rewards.

The idea that the variability of children’s responses could result from
sampling is related to probability matching in that it predicts that the
learner’s responses on aggregate will match the posterior. Thus, probability
matching following reinforcement is consistent with the Sampling
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Hypothesis, but it is also consistent with the Naïve Frequency Matching
account. These two accounts differ in that sampling implies a level of
sophistication that goes beyond what is typically assumed when the term
“probability matching” is used. Rather than simply matching the frequency
of rewarded responses, sampling predicts that children’s responding matches
the posterior probabilities of different hypotheses.

Moreover, there is still something puzzling about probability matching
from the point of view of simple reinforcement theory. Why would
children use a naïve frequency matching strategy? Why do not all the
children select the more probable hypothesis? This is the strategy, after all,
that is most likely to yield a right answer and so enable the children to be
rewarded. Why are 20% of children choosing the less likely hypothesis? If
children are sampling responses from the posterior distribution, this could
explain this result. On this view, the variability in children’s responses may
actually itself be rational, at least sometimes. In particular, it may reflect
a strategy children use to select which hypotheses could explain the data
they have observed.

There is little work exploring probability matching in children beyond
simple reinforcement learning. What there is suggests that children do not,
in fact, probability match when they are considering more cognitive
hypothesesdparticularly linguistic hypotheses (Hudson Kam & Newport,
2005, 2009). In what follows, we present a set of studies that present the first
test of the Sampling Hypothesis with children, distinguishing sampling from
both the Naïve Frequency Matching and the Noisy Maximizing
alternatives.

4.3. Empirical Support for Children’s Sampling
In a first set of experiments, we explored the degree to which children
match posterior probabilities in a causal inference task, set up as a game
about a toy that activates when particular colored chips are placed inside
a bin (Denison, Bonawitz, Gopnik, & Griffiths, 2010). The toy allowed
us to precisely determine the probability of different hypotheses about
which chip had fallen into the bin. Earlier studies have showed that even
young infants are sensitive to probability in these contextsd6-month-
olds assume that the more frequent color chip will be more likely to be
selected from the bag (Denison, Reed, & Xu, in press). In the first
experiment, we tested two key predictions of the sampling hypothesis:
probability matching and an effect of the dependency between responses.
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These are both known consequences of sampling behavior (Vul &
Pashler, 2008).

Children were introduced to a toyda large box with an activator bin
and an attached smaller toy that could light up and play music. The
experimenter demonstrated that placing red chips or blue chips into the
activator bin caused the toy to activate. Then, a distribution of 20 red and 5
blue chips were placed into a transparent container and transferred into
a rigid opaque bag. The experimenter placed the bag on top of the toy
and “accidentally” knocked it over away from the child and toward the
activator bin and the toy activated. The child was asked what color chip
they thought fell into the bin to activate the toy (see Fig. 6.1). Children in
the short-wait condition completed two additional trials immediately
following this first trial, and children in the long-wait condition completed
two additional trials each 1-week apart (all trials consisted of the same 80:20
distribution).

We manipulated time between guesses because (following results with
adults from Vul and Pashler, 2008), we suspected that there would be
greater dependence among guesses if they were spaced close together. As
described previously, one of the requirements of producing a “good”
approximation to the posterior is independence between samples (although,
there are a few special cases in which some dependency between responses
can still yield accurate approximationsda point we will return to later). In
general, however, the sampling hypothesis predicts different patterns of
response when there is more dependence between hypotheses. Thus, we
predicted that the long-wait condition should have produced more inde-
pendence between the hypotheses (e.g., the children may not have
remembered what they had just said) and so produce a better approximation
to the posterior.

Results indicated that, collapsed across conditions, children’s guesses on
Trial 1 were in line with the signature of sampling: probability matching.
Children guessed the red chip (i.e., the more probable chip) on 70% of trials
and the blue chip on 30% of trials, not significantly different from the
predicted distribution of 80% and 20%, respectively, but significantly
different from chance (50%). Children’s responses were also in agreement
with the dependency results found with adults; children in both conditions
showed some dependencies between guesses, but the dependencies were
greater in the short-wait than in the long-wait conditions. As the sampling
hypothesis would predict, because there was less dependence, there was also
a better fit to the actual probabilities in the long-wait condition.

174 E. Bonawitz et al.



Although the results of this first experiment suggest that children’s
responses reflected probability matching, they are also congruent with the
Noisy Maximizing prediction. That is, children may have attempted to
provide maximally accurate “best guesses” but simply failed to do so at
ceiling levels due to factors such as task demands or cognitive load. In
a second experiment, we tested the probability matching prediction more
directly by systematically manipulating the distributions of chips children
saw across three conditions. In a 95:5 condition, children counted 19 red and
1 blue chips; in a 75:25 condition, they counted 15 red and 5 blue chips; and
in a 50:50 condition, they counted 10 red and 10 blue chips. As predicted,
children’s responses reflected probability matching. Children’s tendency to
guess the red chip increased linearly as the proportion of red to blue chips
increased from 50:50 to 75:25 to 95:5 (see Fig. 6.2). This result is congruent
with probability matching but not noisy maximizing, as noisy maximizing

Figure 6.1 Stimuli and procedure used for testing the Sampling Hypothesis in children.
For color version of this figure, the reader is referred to the online version of this book.
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would have resulted in similar performance between the 75:25 and 95:5
conditions.

In a third experiment, we tested the probability matching prediction
with a different more complex set of hypotheses. Do children continue to
produce guesses that reflect probability matching when more than two
alternative hypotheses are available? In this experiment, children in two
conditions were given distributions that included three different colors of
chips: red, blue, and green. The procedure unfolded as it did in the first two
experiments. As in the second experiment, the distributions were system-
atically manipulated across conditions. Children in the 82:9:9 Condition saw
distributions of 18 red, 2 blue, and 2 green chips and children in the
64:18:18 Condition saw 14 red, 4 blue, and 4 green chips. In this experiment,
children in both conditions guessed that the red chip had activated the
machine more often than would be expected by chance but again they also
did not choose the red chip at ceiling levels. Children’s responses reflected

Figure 6.2 Results of children’s predictions in Experiment 2 and the 80:20 first
predictions from Experiment 1 as compared to predictions of the Noisy Max and the
Probability Matching models.
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probability matching in that children in the 82:9:9 Condition guessed the red
chip 72% of the time, significantly more often than children in the 64:18:18
Condition, who guessed the red chip 53% of the time. The proportion of
children choosing the red chip in the 82:9:9 Condition was not different
from the predicted distribution of 82% and the proportion of children who
did so in the 64:18:18 Condition was not different from the predicted
distribution of 64%.

Children in the second and third experiments produced guesses that are
consistent with the probability matching prediction of the sampling
hypothesis. However, as we mentioned previously, children in a variety of
reinforcement learning paradigms have demonstrated probability matching
to the frequencies of reinforced responses. The current studies did not
involve any reinforcement, and children responded to the number of chips in
the container rather than to frequency of effects, so they could not simply be
explained in terms of reinforcement learning. However, these results are still
consistent with a variation of the Naïve Frequency Matching account.
Although responses were not reinforced, children in these experiments may
have matched their responses to the overall frequency of the chipsdthey said
“red” more often simply because they saw more red chips. We conducted
a fourth experiment to test the prediction that children’s responses will match
the posterior distribution of hypotheses and not simply match the frequencies of
the different colored chips encountered in the experimental session.

The frequencies of chips can be separated from the probability of
selecting each color by introducing a constraint on the generative process. In
a variant of the procedure used in the first three experiments, children
counted two separate distributions of chips with the experimenter: one
distribution of 14 red and 6 blue chips and a second distribution of 0 red and
2 blue chips. The experimenter placed the separate distributions into two
identical bags, mixed the placement of the bags around out of the child’s
view, and then randomly chose one of the bags to place on the machine and
knock over. In this case, if children are solely concerned with the frequencies
of each color of chip, they should guess a red chip on 64% of the trials and
a blue chip on 36% of the trials. If they are instead producing guesses based
on the probability of either color chip falling from the randomly chosen bag,
they should guess the red chip 35% of the time and the blue chip 65% of the
time [P(blue chip)¼ (1/2� 6/20þ 1/2� 2/2)]. Children guessed the red
chip on 32% of the trials, different from chance (50%) and the frequency
matching prediction (64%) but not different from the posterior probability
matching prediction (35%).
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In sum, results from these four experiments suggest that children’s
responses in a simple causal inference task were in agreement with the
sampling hypothesis. First, children showed dependencies between
guesses on three consecutive trials and this dependency decreased as
a function of time between guesses and more independence led to greater
probability matching. Second, children provided responses that, on
aggregate, reflected the posterior distribution of hypotheses when making
guesses involving either two possible hypotheses or three possible
hypotheses, ruling out the possibility that children were noisily maxi-
mizing. Finally, children’s guesses matched the posterior distribution of
hypotheses rather than the simple frequencies of observed colors of chips.
They rationally integrated the probability of randomly selecting one of
the two distributions with the frequency of the chips within the
distributions.

5. EXPLORING SPECIFIC SAMPLING ALGORITHMS
IN CHILDREN’S CAUSAL INFERENCES

The experiments discussed in the previous section provide preliminary
support for the Sampling Hypothesis, suggesting that children are doing
something that looks like sampling as opposed to noisily maximizing and
that children are going beyond making simple frequency tabulations in
causal learning tasks. While these results suggest that learners sample
responses from posterior distributions, these studies were not designed to
explore specific algorithms a learner might be using to select a hypothesis as
she encounters new data, and they do not propose a specific mechanism for
search through a hypothesis space.

There are myriad ways in which a learner could move through the space
of hypotheses consistent with sampling algorithms. Learners may resample
a best guess from the full posterior every time a new piece of data is
observed. Learners may sample a hypothesis and stick with it until there is
impetus to reevaluate (e.g., maybe data reache some threshold of “unlike-
liness” to have been generated by the current hypothesis). The way in which
a learner chooses to reevaluate hypotheses may also differ: she may make
subtle changes to the hypothesis she’s currently entertaining; she may go
back and resample completely from the full posterior distribution; or she
may choose a best guess from some surrogate distribution (an approximation
to the posterior distribution). Learners could sample and simultaneously
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consider a few hypotheses or just one. These ideas about specific sampling
and search algorithms have analogs in computer science and machine
learning. We present two different studies designed to test whether children
might be using variants of two types of search algorithmsda WSLS algo-
rithm and a MCMC algorithm.

In order to explore the win-stay, lose-shift (WSLS) and Markov chain
Monte Carlo (MCMC) algorithms, we presented children with more
complex causal learning tasks that unfolded over time. Children received
new evidence at several stages, and at each stage, we asked them to provide
a new guess about what was going on. The pattern of responses that children
produced and particularly the dependencies among those responses, helped
allow us to discriminate which specific algorithms they employed.

5.1. WSLS Algorithms
To explore the algorithms children use in updating their beliefs, we designed
both deterministic and probabilistic causal tasks. In the deterministic task,
data necessarily “rule out” a set of possible hypotheses; in the probabilistic
task, the data are consistent with all hypotheses but statistically may favor
certain hypotheses over others. The task proceeds as follows: We let children
take an initial guess, before seeing any evidence; we then show children
some evidence and ask them about their hypotheses after the evidence; we
then show children more evidence and ask them again about their
hypotheses, and so forth and so on. Thus, children observed a sequence of
data, and we could use the responses of an individual child as he or she
moved through the hypothesis space following each piece of evidence to
help us tease apart different specific algorithms.

In particular, we were interested in algorithms based on the WSLS
principle. These algorithms entertain a single hypothesis at a time, staying
with that hypothesis as long as it adequately explains the observed data and
shifting to a new hypothesis when that is no longer the case. The WSLS
principle has a long history in computer science, where it is used in rein-
forcement learning and game theory (Nowak & Sigmund, 1993; Robbins,
1952), and psychology, where it has served as an account of human concept
learning (Restle, 1962). Bonawitz, Denison, Chen, Gopnik, and Griffiths
(2011) provided a mathematical proof that demonstrates how specific
algorithms using the WSLS principle can be used to sample from posterior
distributions. The result is a set of surprisingly simple sequential algorithms
for performing Bayesian inference.
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The deterministic case of WSLS means that data necessarily rule out a set
of hypotheses. The algorithm simply involves a process where the learner
stays with a hypothesis when data are consistent and shifts to a new
hypothesis when data are inconsistent. The probabilistic case presents a more
interesting and ecologically plausible test of WSLS, so we focus on the
probabilistic studies here.

In the probabilistic causal task, we introduced children to a machine that
could be activated with different kinds of blocks. An experimenter
demonstrated that three kinds of blocks activate the machine with different
probabilities: red blocks activated the machine on five out of six trials, the
green blocks on three out of six trials, and the blue blocks just once out of six
trials. We then introduced children to a new block that had “lost its color”
and told children we needed their help guessing what color the block should
be: red, blue, or green. We then asked children what happened each time
the mystery block was placed on the machine (either the machine activated
or did not); after each observation, we asked children what color they
thought the block was now.

One specific WSLS algorithm proceeds on the problem of inferring the
identity of the mystery block given probabilistic data as follows. The learner
starts out by sampling a hypothesis from the prior distribution before seeing
any data about the mystery block. Let us say that she happens to choose red
by sampling it randomly from her prior; all that means is that she rolls
a weighted die such that the weights of the colors on the die are proportional
to her beliefs about how likely the block is to be each color before seeing the
evidence. In this case, for example, the prior evidence provides an equal
probability for each block initially, so she might be equally likely to guess
red, blue, or green. In another case, she might have reason to think that red
blocks were more common, so that she would weight the internal throw of
the die more heavily toward red, though blue or green might also turn up.
Let us say this learner happens to roll red. Then, the mystery block is set on
the machine and it turns out that it activates the toy. The learner now must
decide whether to stay with red or shift to another hypothesis. In this simple
WSLS algorithm, the decision to stay or shift is made based purely on the
likelihood for the observed data. As seen in the demonstration phase, the red
block activates the machine five out of six times and so the likelihood of
seeing the toy light if the block really is red is simply 5/6. So, to make the
choice to stay, we can imagine a coin with 5/6 probability of landing on stay
and 1/6 probability landing on shift. That is, although the evidence is
consistent with the red block hypothesis, there is still a (small) chance that
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the coin will come up shift, and the learner will return to the updated
posterior (which includes all the evidence observed so far) to sample their
next guess. Each time the learner observes a new piece of data, she makes the
choice whether to stay or shift, in this way, based only on the most recent
data she has observed.

When applying this WSLS algorithm, an individual learner may look like
she is randomly veering from one hypothesis to the next, sometimes
abandoning a likely hypothesis or sampling an unlikely one, sometimes
being too strongly influenced by a piece of data and sometimes ignoring data
that is unlikely under her current hypothesis. However, looking across
a population of learners reveals a surprising property of this algorithm:
Aggregating all the hypotheses selected by all the learners returns the
Bayesian predicted posterior distribution (or at least a sample-based
approximation thereof). Thus, the WSLS algorithm provides a more effi-
cient way to do Bayesian inference. The learner can maintain just a single
hypothesis in her working memory and need only recompute and resample
from the posterior on occasion. Nevertheless, the responding of participants
on aggregate still act like a sample from the posterior distribution.

We can contrast this WSLS algorithm with independent sampling in
which a learner simply samples a new hypothesis from the posterior distri-
bution each time a response is required. In other words, on each trial, the
learner will choose red, blue, or green in proportion to the probability that
the block is that particular color given the accumulated evidence. The
WSLS algorithm shares with independent sampling the property that
responses on aggregate will match the posterior probability, but the algo-
rithms differ in terms of the dependencies between responses. Because the
learner resamples a hypothesis after each new observation of data in the
independent sampling algorithm, there is no dependency between an
individual’s successive guesses. In contrast, the WSLS algorithm predicts
dependencies between responses: if the data are consistent with the current
hypothesis, then the learner is likely to retain that hypothesis. This specific
instantiation of WSLS is thus one of the special cases where the algorithm
approximates the correct distribution even though there are dependencies
between subsequent guesses. This establishes some clear empirical predic-
tions: Both algorithms will produce a pattern of responses consistent with
Bayesian inference on any given trial, but they differ in the predictions that
they make about the relationship between responses on successive trials.

The first thing we can examine is simply whether children’s responses
approximate the posterior distribution produced by Bayesian inference in
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aggregate; indeed, children’s predictions on aggregate correlated highly with
Bayesian posteriors (Fig. 6.3). Next, we can examine the dependencies
between responses for the individual learners to investigate whether WSLS
or independent sampling provide a better fit to children’s responses. To
compare children’s responses to the WSLS and independent sampling
algorithms, we first calculated the “shift probabilities” under each model.
Calculating shift probabilities for independent sampling is relatively easy:
because each sample is independently drawn from the posterior, the shift
probability is simply calculated from the posterior probability of each
hypothesis after observing each piece of evidence. Shift probabilities for
WSLS were calculated such that resampling is based only on the likelihood
associated with the current observation, given the current hypothesis. That
is, with probability equal to this likelihood, the learner resamples from the
full posterior. We also computed the log-likelihood scores for both
modelsdthe probability that we would observe the pattern of responses
from the children given each model. Children’s responses highly correlated
with and had higher log-likelihood scores from the WSLS algorithm. This
suggests that the pattern of dependencies between children’s responses is
better captured by the WSLS algorithm than by an algorithm such as
independent sampling.

5.2. MCMC Algorithms
The results of the WSLS experiments suggest one algorithm that learners
might use to sample and evaluate hypotheses. In the experiments, we have
considered so far, the space of possible hypotheses was relatively limited.
Children only had to consider whether a red blue or green chip or block
activated the machine. However, the question of how a learner searches
through a space of hypotheses remains an important issue for cases when the
space of hypotheses is much larger. Constructing an intuitive theory based
on observing the world often confronts learners with a more complex space
of possibilities.

In particular, in the examples we discussed so far, the causal categories the
children saw (red, blue, and green blocks) and the causal laws (chips activate
the machine) were both well defineddthey did not have to be learned. In
other cases, children have been shown to use probabilistic inference to
uncover even relatively complex and abstract causal laws (e.g., the difference
between a causal chain and a common cause structure, Schulz, Gopnik,
et al., 2007, or between a disjunctive or conjunctive causal principle, Lucas
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et al., 2010). Schulz, Goodman, Tenenbaum, and Jenkins (2008) and Seiver,
Gopnik, and Gooman (in press) also showed that children can uncover new
causal categories and concepts. In more realistic cases of theory change,
learners, however, might face the “chicken-and-egg” problem: the laws can
only be expressed in terms of the theory’s core concepts, but these concepts

Figure 6.3 Method for WSLS and Bayesian posterior probability and children’s data
from WSLS experiment for each block, red (R), green (B), and blue (B) after observing
each new instance of evidence using parameters estimated from fitting the Bayesian
model to the data. For interpretation of the references to color in this figure legend, the
reader is referred to the online version of this book.
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are only meaningful in terms of the role they play in the theory’s laws. How
is a learner to discover the appropriate concepts and laws simultaneously,
knowing neither to begin with? How could a learner search through this
potentially infinite space of possibilities?

Recent ongoing work by Bonawitz, Ullman, Gopnik, and Tenenbaum
has the goal of studying empirically how children’s beliefs evolve through
such a process of theory discovery, and understanding computationally how
learners can converge quickly on a novel but veridical system of concepts
and causal laws. Goodman et al. (2008) and Ullman, Goodman, and
Tenenbaum (2010) describe a sampling method using a grammar-based
Metropolis Hastings MCMC algorithm. The grammar generates the prior
probabilities for the theories and the MCMC algorithm can be used to
evaluate these theories given evidence. Specifically, the grammar is a broad
language for defining theories, which is able to build a potentially infinite
space of possibilities (see also Ullman et al., 2010). This grammar produces
the space of possible hypotheses and even provides a measure of the prob-
ability of each hypothesis: this prior probability of each hypothesis is the
probability that each hypothesis is generated by the grammar. The algorithm
begins with a specific theory, t, and then uses the grammar to propose
random changes to the currently held theory. This new proposed theory is
probabilistically accepted or rejected, depending on how well it explains the
data compared to the current theory as well as how much simpler or more
complex it is.

Ullman et al. (2010) suggested that this method can explain how human
learners, including young children, can rationally approximate an ideal
Bayesian analysis. This method allows a practical learner to search over
a potentially infinite space of theories, holding on to one theory at a time
and discarding it probabilistically as new potentially better alternatives are
considered.

Bonawitz and colleagues have begun to explore how well this MCMC
approach captures children’s inferences about magnetic objects. Magnetism
provides an interesting domain in which to conduct this investigation,
because the space of possible kinds of causal interactions, the number of
possible groups of objects, and the specific sorting of objects into those groups
is very large. In particular, we can consider the search problem at multiple
stages. First, given no evidence, we can consider which theories are a priori
most likely. Second, given informative but still ambiguous data, we can see
how the probability of various theories will change. Third, given disambig-
uating data, we can see if the system converges on the correct answer.
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Observing unlabeled but potentially magnetic objects, like unlabeled
blocks, interacting with two labeled instances of objects from causally
meaningful categories (i.e., blocks that are labeled with north and south
polarities) provides a particularly interesting test. No matter how many
observations are provided between the unlabeled and labeled blocks,
ambiguity remains: an ideal learner would not be able to infer whether the
actual law is that like attracts like and opposites repel or whether the law is
that likes repel and opposites attract. Bonawitz, Ullman, Gopnik, and
Tenenbaum implemented a grammar-based Metropolis Hastings algorithm
of magnetism discovery following this ambiguous evidence. Their model
discovered these two possible alternative theories and these two theories
scored highest in the search. Given that both these theories were consistent
with the observed data and were intuitively simple, this shows that stochastic
search is an algorithm that can indeed be used to find reasonable theories.
After providing disambiguating evidence, the model was also able to pick
out the single most likely theory.

These modeling results and those of Ullman et al. (2010), which inspired
this investigation, demonstrate that in practice, the MCMC algorithm can
use relatively minimal data to effectively search through an infinite space of
possibilities, discovering likely candidate theories and sorting of objects into
classes.

Bonawitz, Ullman, Gopnik, and Tenenbaum are also empirically
examining children’s reasoning about magnets to see whether children
search through and evaluate hypotheses in a way consistent with the
model predictions. In their ongoing studies, children are asked about their
beliefs at different phases of the experiment: before they observe any
evidence, after they observe some ambiguous (but still informative)
evidence, and after they observe disambiguating evidence. They have
found that prior to observing the evidence, children entertain a broad
space of possible causal theories about the possible groupings and inter-
actions between the magnets. These hypotheses reflect the prior proba-
bilities over theories generated by the grammar. Following the ambiguous
evidence, children rationally respond by favoring the two “best” theories
(that likes attract and opposites repel and that likes repel and opposites
attract), as predicted by the results of the search algorithm. When the
children see a single disambiguating intervention (e.g., when two objects
sorted into the same group interact and either attract or repel), they
converge on the correct theorydeven when this means abandoning the
theory they just held.
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Strikingly, neither the initially ambiguous evidence nor the single
disambiguating trial are sufficient to infer the correct theory. Nevertheless,
children are able to make an inductive leap during the experiment. They
simultaneously integrate the partially informative (but still ambiguous)
evidence given by the initial observed interactions with the final disam-
biguating trial between two unlabeled blocks. Thus, even in the course of
a short experiment, preschool-aged children are able to solve a simple
version of the chicken-and-egg problem in a basically rational way. They
search through a space of possible hypotheses and integrate multiple pieces
of evidence across different phases of the experiment.

MCMC algorithms provide an account of how a learner could move
through a potentially infinite space of possible hypotheses and still produce
behavior consistent with exact Bayesian inference. There are several
directions in which this line of research can be extended. One important step
is to understand and characterize the “building blocks” for intuitive theories.
Following from this, it will be interesting to investigate how it might be
computationally plausible for a system to learn to use simple algorithms to
construct complex theories from these building blocks (Kemp, Goodman, &
Tenenbaum, 2010). A second extension is to apply these models to
“common sense” domains such as physics, psychology, and biology and to
the “real-world” theories that children actually learn. Developmental
learning mechanisms for this kind of abstract knowledge are currently poorly
understood.

6. DISCUSSION

We began this chapter with two problems for the idea that probabi-
listic models can capture how children learn intuitive theoriesdthe algo-
rithm problem and the variability problem. We have suggested that the
Sampling Hypothesis may provide an answer to both these problems. In the
first experiment, we showed that children’s causal inferences have some of
the key signatures of samplingdparticularly a pattern of probability
matching that goes beyond naïve frequency matching.

We then introduced specific sampling algorithms that approximate
Bayesian inference. First, we found that preschoolers’ responses on a causal
learning task were better captured by a WSLS algorithm than by indepen-
dent sampling. An attractive property of the WSLS algorithm is that it does
not require the learner to compute and resample from the full posterior
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distribution after each observation. These results suggest that even responses
that sometimes appear nonoptimal may in fact represent an approximation
to a rational process and provide an account of how Bayesian inference
could be approximated by learners with limited cognitive capacity.

We also presented an account of how a learner might search through
a potentially infinite hypothesis space, inspired by computational models,
which include MCMC searches over logical grammars (Ullman et al., 2010).
These searches include randomly proposed changes to a currently held
theory, which are probabilistically accepted, dependent on the degree to
which the new theory better accounts for the data. These same search and
inference capacities may help to drive theory change in the normal course of
children’s cognitive development. At the least, Bonawitz et al.’s current
experiments suggest that preschool-aged children are able to discover
a correct theory from a space of many possible theories. Children search
through a large space of possible hypotheses and are able to integrate
multiple pieces of evidence across different phases of the experiment to
evaluate the best theory.

6.1. Open Questions
We have suggested that a learner could search through a hypothesis space in
a number of ways, dependent perhaps on the task demands, developmental
change, or even individual preference. Which algorithm a learner uses may
also depend on the efficiency of the algorithm. However, how we define
efficiency may depend on how difficult it is to compute posterior proba-
bilities, and then how difficult it is to generate one or a few samples from the
posterior. Efficiency may require considering how many samples must be
observed before the correct posterior is approximated and the cost of each
observation. Thus, which algorithms are most efficient may depend on the
nature of the problem being solved and on the capacities of the learner. So,
we do not have good answers to when specific algorithms may be favored
over others and in which contexts, but it is an important line for future
research.

We can also ask whether sampling behavior is rational. A casual answer is
“yes”dbecause we show how a “rational” or “computational” level analysis
can be approximated at the algorithmic level. However, again assessing
rationality depends on the goals of the learner. In some circumstances,
a learner may want to quickly converge on the most likely answer. In other
circumstances, however, the learner may want to explore more of the
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possibilities. These “exploit” or “explore” strategies might lead a learner to
use different kinds of algorithms. Sampling and searching through a space of
hypotheses may be a particularly useful learning mechanism for exploratory
learning. It allows a learner the possibility of discovering an unlikely
hypothesis that may prove correct later (after observing additional data).
Were a learner to simply maximize, always choosing the most likely
hypothesis, he might miss out on such a discovery.

One of the most promising implications of examining learning at the
algorithmic level is that other aspects of development (e.g., memory limi-
tations, changes in inhibition, changes in executive function) can be con-
nected more explicitly to rational models of inference. For example,
a particle filter approximates the probability distribution over hypotheses at
each point in time with a set of samples (or “particles”) and provides
a scheme for updating this set to reflect the information provided by new
evidence. The behavior of the algorithm depends on the number of parti-
cles. With a very large number of particles, each particle is similar to a sample
from the posterior. With a small number of particles, there can be strong
sequential dependencies in the representation of the posterior distribution.
Developmental changes in cognitive capacity might correspond to changes
in the number of particles, with consequences that are empirically testable.

Finally, we suggested that moving forward also involves connecting the
algorithms that children might be using to carry out learning with ways in
which the algorithms could be implemented in the brain. Ma, Beck,
Latham, and Pouget (2006) suggest that cortical circuits may carry out
sample-based approximations, reflecting the variability in the environment.
Probabilistic sampling algorithms can also capture ways in which inputs
should be combined (e.g., across time, sensory modalities, etc.) taking the
reliability of the input into account and recent research on neural variability
demonstrates this in the brain (Beck et al., 2008; Fetsch, Pouget, DeAngelis,
& Angelaki, in press). Other work may examine the implication of how
growing dense connections between brain regions connect to particular
algorithms and how those algorithms are affected as regions are pruned (as in
later adolescence).

7. CONCLUSIONS

In the course of development, children change their beliefs, moving
from a less to more accurate picture of the world. How do they do this given
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the vast space of possible beliefs? And how can we reconcile children’s
cognitive progress with the apparent irrationality of many of their expla-
nations and predictions? The solution we have proposed is that children may
form their beliefs by randomly sampling from a probability distribution. This
Sampling Hypothesis suggests a way of efficiently searching a space of
possibilities in a way that is consistent with probabilistic inference and it leads
to predictions about cognitive development. The studies presented here
suggest that preschoolers are approximating a rational solution to the
problem of probabilistic inference via a process that can be analyzed as
sampling and that the samples that children generate are affected by
evidence. By thinking about the computational problems that children face
and the algorithms they might use to solve those problems, we can approach
the variability of children’s responses in a new way. Children may not just be
effective learners despite the variability and randomness of their behavior.
That variability, instead, may itself contribute to children’s extraordinary
learning abilities.
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Abstract

Our adult concept of choice is not a simple idea, but rather a complex set of beliefs
about the causes of actions. These beliefs are situation-, individual- and culture-
dependent, and are thus likely constructed through social learning. This chapter takes
a rational constructivist approach to examining the development of a concept of
choice in young children. Initially, infants’ combine assumptions of rational agency
with their capacity for statistical inference to reason about alternative possibilities for,
and constraints on, action. Preschoolers’ build on this basic understanding by inte-
grating domain-specific causal knowledge of physical, biological, and psychological
possibility into their appraisal of their own and others’ ability to choose. However,
preschoolers continue to view both psychological and social motivations as constraints
on choice – for example, stating that one cannot choose to harm another, or to act
against personal desires. It is not until later that children share the adult belief that
choice mediates between conflicting motivations for action. The chapter concludes by
suggesting avenues for future research – to better characterize conceptual changes in
beliefs about choice, and to understand how such beliefs arise from children’s everyday
experiences.
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1. INTRODUCTION

As adults, we share the intuition that many of our everyday actions are
choices. Our concept of choice guides our explanations of behavior (Gilbert
&Malone, 1995; Ross & Nisbett, 1991), our understanding of causal agency
(Blakemore & Frith, 2003; Haggard & Tsakiris, 2009; Wegner, 2002) and
intentionality (Guglielmo, Monroe, & Malle, 2009), and our intuitions
about morality and social responsibility (Nichols & Knobe, 2007; Pizarro &
Helzer, 2010; Vohs & Schooler, 2008). We see choices in everyday acts of
no consequencedwhat we put on our sandwich, whether we say hello to
a stranger passing on the street. We also see choice in actions with major
consequencesdwho we marry, what we study in college. Given the
centrality of the concept of choice in adult reasoning, it is surprising that we
know relatively little about its developmental origins. That is, while it has
long been acknowledged that having choices is important to healthy
cognitive and social development (e.g. Leotti, Iyengar, & Ochsner, 2010;
Ryan & Deci, 2000), we know almost nothing about when young children
first understand of actions as choices or about how a concept of choice is
initially acquired through early experience.

Well, this is not completely true. We know something. We know that
parents, teachers, and other adults talk to children about choices (Killen &
Smetana, 1999; Nucci & Weber, 1995). We know that through develop-
ment, with increasing conviction, children think of themselves as free and
autonomous (Helwig, 2006; Ryan & Lynch, 1989). We know that even in
adults, the idea of choice is different for different individuals and for different
cultural groups (Kitayama, Snibbe, Markus, & Suzuki, 2004; P€ohlmann,
Carranza, Hannover, & Iyengar, 2007; Savani et al., 2010). We also know
(well, at least we believe) that children do not start out life with a concept of
choice, at least not one that looks like ours. So, we know that somehow this
concept of choice must be learned.

What we don’t know is exactly how it is learned. This is where rational
constructivism can help. It can serve as a guiding principle to ask the
necessary questions about learning and speculate on the answers: What
prior assumptions form the basis for children’s concept of choice? How and
when does the concept change? What sort of experiences might provide
the right sort of evidence for change? This technique has been applied
successfully in other conceptual domains, and many of the chapters in this
volume are proof of its success. Applying this framework here will
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hopefully yield some answers and spark new questions to drive further
research.

2. REPRESENTATION AND REALITY

Before addressing the developmental question, a few caveats are in
order. The first is an acknowledgment of the complexity of the concept;
choice is a simple word but not a simple idea. Instead, it captures a set of
related concepts and intuitions, all of which are central to how we under-
stand the causes of our own and others actions. Our concept is both
localdinfluencing “construals” of specific situations as affording/not
affording choicedand globaldinfluencing our “worldviews” of free will,
autonomy, and moral responsibility. There are aspects of our concept of
choice that are culturally universal, and other aspects that are highly
culturally variable. In the words of Iyengar (2010): “Though all humans
share a basic need and desire for choice, we do not all see choice in the same
places or to the same extent”. The individual, situational, and cultural
differences in beliefs about choice strongly suggest that learningdand in
particular social learningdplays a critical role in how this concept is con-
structed over development.

The second caveat concerns the relationship between beliefs about choice
and actuality. I take the view, shared by many who research similar intuitions
in adults, that our belief in choice is part of our general understanding of the
psychological world (Baumeister, Mele, & Vohs, 2010; Guglielmo et al.,
2009). So, I will leave aside questions about actualitydhow we actually make
choices (human decision making) and whether we actually have choices (the
so-called “problem of free will”)dfor others to ponder. Choice lives in the
mind of the beholder; it relates to reality but is not wholly explained by it. For
example, we sometimes feel we made a choice even when the evidence
suggests that we did not (Wegner, 2002). Also, we sometimes feel as if we
were led by circumstance to act in a particular way, even when those
circumstances do not technically force our actions. Moreover, as mentioned
above, the very same acts may count as choices for one individual but not for
another (Paulhus&Carey, 2011) or bymany individuals in one cultural group
and not another (Kitayama et al., 2004; Miller & Chakravarthy, 2011; Savani
et al., 2010). As a final complication, our appraisals of the same choice
behaviors sometimes vary depending on whether we are attributing
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responsibility to other individuals or to ourselves (Norenzayan & Nisbett,
2000; Pronin & Kugler, 2010; Ross & Nisbett, 1991).

One final point concerns the relationship between the concept of choice
and the experience of agency. It is tempting to conclude, based on intuition
alone, that our concept of choice arises directly from our experience of our
own actions as “freely willed.” Even infants experience agency, so if that is
the only basis for our concept, there is not much of a developmental story to
be told. This seems to be the position of some neuroscientists and philoso-
phers (e.g. Holton, 2010), and it has empirical support: Experimental
investigations of the varieties of agentic experience show that when such
experience is enhanced or disrupted, our beliefs about choice can be
enhanced or disrupted accordingly (Blakemore & Frith, 2003; Haggard &
Tsakiris, 2009; Wegner, 2002). The opposite causal storydthat our concept
of choice is the first and foremost product of social cognition, arising from our
interactions with and observations of other people, and only later gets applied
to our own agentic experiencedis perhaps less intuitive. It too, however, has
empirical support: directly manipulating beliefs in free choice and autonomy
can profoundly influence our experience of agency (Aarts & Van den Bos,
2011; Pronin, Wegner, McCarthy, & Rodriguez, 2006). Thus, we are left
with a chicken-and-egg problemdwhich comes first, the experience of
agency or the concept of choice? An interesting answer may reveal itself in
developmental data, in particular if developmental changes are in any way
related to children’s emerging ability to guide and control their actions.

In short, choice is a theoryda social cognitive theory and a theory about
our own experience. The development of these ideas is informed by
evidence but does not reduce to a mere “empirical generalization” (Gopnik
& Melzoff, 1997; Gopnik & Wellman, 1992) from evidence. This is
precisely what makes the question of how we learn to view actions in this
way so interesting and important.

3. RATIONAL STARTING STATES: POSSIBILITY
AND CONSTRAINT

Central to our concept of choice is the ability to entertain alternative
possibilities for action: If an action is a choice, it could have been otherwise.
On the other hand, if an action is not a choice, it had to occur exactly as it
diddit could not have been otherwise. This implies that our understanding
of choice is inseparable from our understanding of constraintsdinternal and
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external factors that limit choices by limiting alternative courses of action.
Examples range from the properties of the external environment (you can’t
choose a rainy day, you can’t choose to order Mexican food at a Thai
restaurant), the limits of physical possibility (you can’t choose to fly or have
super-human strength), and the limits of epistemic possibility (you can’t
chose to know what the Mona Lisa looks like if you have never seen her,
you can’t choose to understand theoretical physics if you haven’t studied it).
The extent to which we can understand and imagine the alternatives (in
general or in any given situation) determines whether we view an action as
a choice. When there are no alternative possibilities or where the possibilities
are limited, then there is, respectively, no choice or limited choice.

It has been suggested that the ability to imagine alternative possibilities
for actionsdand thus to construe actions as choicesdemerges toward the
end of the preschool years, alongside or after the ability to engage in explicit
counterfactual reasoning (Harris, German, & Mills, 1996; Nichols, 2004;
Sobel, 2004). While there are certainly important developments in chil-
dren’s concept of choice around this age (which I will return to later), it is
not the earliest that we see evidence of an understanding of possibility and
constraint. Rather, this understanding originates in infancy and is based on
two related assumptions that infants make about psychologically caused
actions, both of which are rational.

3.1. Rational Agency, Freedom, and Constraint
The first of the two is the assumption of rational agencydthe belief that
psychological agents will act in the most efficient manner to achieve their
goals (Gergely & Csibra, 2003; Gergely & Jacobs, this volume). In a classic
demonstration of this assumption, Gergely, Bekkering, and Kir�aly (2002)
allowed 14-month-old infants to observe an actor pressing a panel with her
head to turn on a light. The actor was either free to use her hands (they were
placed on the table in front of her) or her hands were occupied (she used
them to wrap herself in a blanket). After this demonstration, infants were
given the panel themselves. In the “hands free” condition, infants pressed
the panel with their heads, imitating the means as well as the goal of the
action. Critically, however, in the “hands occupied” condition, infants
imitated the action using the more efficient meansdthat is, they pressed the
panel with their own free hands. Thus, infants show, through their selective
imitation, that they distinguish between the free, intentional actions and the
constrained, unintentional ones.
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Even younger infants show through their looking behavior that they
expect rational agency and thus expect differences in actions in the presence
or absence of constraints. For example, after being habituated to an agent
traversing a barrier, 9-month-olds recognize that it will try more efficient
means of achieving an outcome if a barrier is removed (Csibra, Gergely,
Bír�o, Ko�os, & Brockbank, 1999). By 10 months, infants understand how
physical constraints can lead to failure to achieve a goal. Brandone and
Wellman (2009) showed 10- and 12-month-old infants an actor reaching
over a barrier for a ball but failing to get it. Infants later expected the actor to
behave completely differentlydthey expect him to reach directly for and to
get the balldwhen the barrier was absent.

Infants robustly distinguish free from constrained actions in many situ-
ations, even when the differences between the actions are not physically
apparent. For example, infants selectively imitate the same acts when they
are linguistically marked as intentional (“there!”) versus accidental (“oops!”
e.g. Carpenter, Aktar, & Tomasello, 1998). Similarly, they behave differ-
ently toward actors who “teasingly” show an unwillingness to share or help
than to actors who demonstrate good intentions but genuine inability
(Behne, Carpenter, Call, & Tomasello, 2005; Dunfield & Kuhlmeier, 2010;
Hamlin, Wynne, & Bloom, 2008). Moreover, a number of studies have
found that 15- to 18-month-old infants understand how lack of information
will determine subsequent actionsdan epistemic, rather than a physical
constraint (Buttelmann, Carpenter, & Tomasello, 2009; Kov�acs, Tégl�as, &
Endress, 2010; Onishi & Baillargeon, 2005; Southgate, Senju, & Csibra,
2007). Thus, infants do not necessarily have to see a constraint to reason that
an action was not intentionally (freely) performed.

3.2. The Statistics of Alternative Possibility
One advantage of assuming agents will rationally act to achieve goals is that it
leads to inferences about alternative possibilitiesdat least for constrained
actions. However, one of the hallmarks of understanding choice is the ability
to entertain alternative possibilities for free actions as well. This type of
inference does not automatically follow from the assumption of rational
agency. In fact, it is quite the opposite: free (unconstrained) actions that are
efficient should occur exactly as they did, not otherwise. Thus, rational
agent assumptions alone would lead infants to consider one possibility for free
actions, not multiple possibilitiesdwhich would restrict their ability to
reason about choice.
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The ability to understand multiple alternative possibilities for free action
comes from another assumption infants make about psychological agents:
when acting in accordance with their own intentions, goals, and desires,
agents can (and consistently do) violate statistical probabilities. Put another
way, psychologically caused actions are not only efficient but also
nonrandom. Thus, to learn that free actions are choices, infants must rely on
another rational, early-emerging abilitydthat of statistical inference.

Consider an action that an observer would expect to be statistically
randomda person taking toys out of a toy box with his or her eyes closed.
Not only adults but also preschoolers (Denison, Konopczynski, Garcia, &
Xu, 2006) and even infants (Tégl�as, Girotto, Gonzalez, & Bonatti, 2007; Xu
& Garcia, 2008) expect randomly drawn samples to be representative of
underlying populations and vice versa. For example, Xu and collegues (Xu
and Garcia; 2008; Xu & Denison 2009, and Denison & Xu this volume)
showed 8- and 11-month-old infants a person taking four red balls and one
white ball out of a box with her eyes closed. When the contents of the box
were revealed, infants looked longer at an unexpected population (a box full
of mostly white balls with some red balls) than at an expected population
(mostly red balls and some white balls). However, when 11-month-old
infants saw a person with an explicitly expressed preference draw the sample
intentionally (i.e. with her eyes open and looking in the box), Xu and
Denison (2009) found that these infants did not form expectations about the
contents of the box. This is, in fact, a special case of infants’ assumption of
rational agency: infants made random sampling assumptions about the
constrained actions (eyes closed) but not the intentional ones (eyes open).
Coupled with the fact that infants were familiarized with the actor’s pref-
erence in advance, this demonstration leaves unclear whether infants
imagined alternative possibilities for the nonrandom, eyes-open action.

One way to find out is to contrast two types of free actionsdone that
violates random sampling assumptions and one that does not. Imagine
a person intentionally taking several toys of one type (say, five rubber frogs)
out of a toy box full of two types of toys (rubber frogs and rubber ducks) and
playing happily with them. If most or all of the toys in the box are frogs, the
statistical information is in keeping with random draws from the box; thus,
this situation would provide no evidence that the person chose rubber frogs
over rubber ducks. If, however, the box is full of rubber ducks with very few
rubber frogs in it, then the sample of five frogs is not likely to have been
drawn by chance. More likely, the person chose to take only frogs and so is
displaying a greater preference for frogs than for ducks. Generally, determining
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preferences requires attending to the relation between choices made and
alternative options not chosendin this case, the other toys in the box. Thus,
if infants can use the violation of random sampling to learn about a person’s
preference in this manner, it suggests that they are attending to alternative
possibilities for free actiondin other words, it shows that they view the
action as a choice.

Kushnir, Xu, and Wellman (2010) showed random groups of 20-
month-old infants this exact scenario. Infants saw a female experimenter
select five toys of one type (e.g. frogs) out of a box containing a minority of
that type (e.g. 18% frogs to 82% ducks) or a majority of that type (e.g. 82%
frogs to 18% ducks). Social and affective cues signaling both intention and
desire to play with the toys were constant and positive across conditions.
Later on, a bowl of ducks and a bowl of frogs were placed in front of the
child and the experimenter asked for a toy. Infants were more likely to give
her the frogs when they were in the minority of items in the box previously.
When they were previously in the majority, the infants handed her both
frogs and ducks equally (in fact, in the majority condition, they were slightly
more likely to hand her ducks, perhaps assuming she would prefer some-
thing new to play with). Thus, even though her actions were unconstrained
and intentional in both conditions, infants inferred that she made
a choicedacted based on her preference for frogs and not based on some
other causal factordonly when the alternatives were mostly ducksdthat is,
when the sample was nonrandom.

In a similar study, Ma and Xu (2011) found that infants as young as 16
months use violations of random sampling to infer that others’ preferences
are different from their own. More recently, using modified violation-of-
expectation paradigm, we found that younger (10-month-old) infants make
action predictions based on the same statistical relations, inferring that an
actor will reach for another instance of a toy that she had originally chosen
from a minority of toys in the box but not when that same toy when it was
haphazardly removed from the majority (Wellman, Kushnir, & Xu,
submitted for publication).

Note that if there were no alternative objects in the box and the only
available objects were of the type chosen, then infants could have based their
inference on the situational constraint that no other option was available,
rather than on the statistical likelihood that the action occurred randomly.
Thus, we made sure that infants knew about both types of toys in the box in
two waysdwe allowed them to play with the box contents before the
experimenter sampled items and we labeled each type of object in both
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conditions (“Look! Ducks and Frogs!”). In this way, we ensured that their
inferences were based on evaluating the statistical relation between the
sample and the alternative possibilities in the population.

As further evidence that this is indeed a statistical inference, we showed
that 3- and 4-year-olds children infer the strength of agent’s preference from
the degree of nonrandomness of the sample. We varied the proportion of toys
in the box across three groups of preschoolers. In the first group, 18% of the
toys were of the selected type (e.g. red foam circles) and 82% were of an
alternative type (e.g. blue foam flowers). In the second group, 50% were of
the selected type. In the final group, 100% were of the selected type. After
they saw the selection, children were asked to give the agent (a puppet named
Squirrel) "the toy that he likes" out of the three possible choices: the selected
type (red circles), the alternative type (blue flowers), or a novel type (yellow
cylinders). The results showed that preschoolers inferences were a function of
the strength of the statistical evidence for nonrandom samplingdthey were
most likely to infer a preference for the selected object when it was in the
minority of objects in the box (18% condition), slightly less likely when the
proportions were equal (50% condition), and least likely when it was the only
object in the box (100% condition).

The ability to engage in statistical inference about samples and populations
ensures that children not only watch what choices people make but they also
watch the choices they avoid. Both might be critical aspects of learning about
the specific inner motivationsdthe likes and dislikesdof other people.

4. FILLING IN THE DETAILS

So far I have tried to show how the earliest concept of choicedthe
understanding of alternative possibilities for action and constraints on possi-
bilitydcould be based on combining assumptions about rational agencywith
a capacity for statistical inference.Together, these assumptions support further
learning about situations that do or do not afford choice in early childhood.

4.1. Acquiring New Domain-Specific Knowledge
The assumption of rational agency ensures that children, like adults, will
consider constraints when reasoning about whether a situation affords choice.
Though this may be an early and fundamental general principle, there is still
a lot that infants and children have to learn about the specific situational
constraints. Large physical obstacles, such as the barriers in the studies above,
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are understood to be constraints quite early. Understanding other constraints
may require infants to accumulate some relevant experience first. For
example, infants can reason that a blindfold imposes a constraint only after
they have tried one on themselves (Meltzoff & Brooks, 2008; Senju,
Southgate, Snape, Leonard, & Csibra, 2011). Also, when achieving a goal
involves a sequence of complicated steps, infants can reason about the exact
actions required to do so efficiently only after themselves exploring the
relations between actions and outcomes (Sommerville, Woodward, &
Needham, 2005). Some constraints, then, might only be understood as such
only after personal experience (see Sommerville, this volume; also Paulus,
Hunnius, Vissers, & Bekkering, 2011).

By the time children are in preschool, the sorts of constraints they are able to
consider are more sophisticated, reflecting their more sophisticated conceptual
knowledge of physical, biological, and psychological phenomena (Gelman,
2003;Gelman&Wellman, 1991; Inagaki&Hatano, 1993; Schult&Wellman,
1997). They learn these constraints as part of their intuitive theories of these and
other conceptual domains. For example, after children learn that the flu will
make you tired andweak, they can understandwhy a child with the flu cannot
choose to run fast and play with her friends. This knowledge does not
constitute a conceptual shift in understanding choicedthe general framework
of possibility and constraint is the samedbut itmarks a significant change in the
details of what children consider as a choice.

In order to see how domain-specific knowledge about constraint inform
children’s early concept of choice, we asked preschool children both
counterfactual and hypothetical questions about possibility and constraint.
We expect that their responses should reflect their early understanding of
alternative possibilities for free actions and limitations of possibility for
constrained actions.

Kushnir, Chernyak, and Wellman (2009) told 4-year-olds stories adap-
ted from Schult and Wellman’s (1997) study of children’s psychological,
biological, and physical explanations for human actions. In some stories,
a character desired to perform a possible action (e.g. stepping off a stool and
going to the ground) and in others a character desired to perform an
impossible action (e.g. stepping off a stool and floating in the air). Across
stories, the final outcome was the matcheddthe character, regardless of her
initial desire, ended up performing the same action (e.g. stepping off of the
stool on to the ground). After seeing the outcome, children were asked
whether the character could have done otherwise. This question appealed to
either a possible choice to do something different than the initial desired actions
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(e.g. “Did she have to do that, or could she have stayed on the stool?”) or an
impossible choice in line with the impossible desired action (e.g. “Did she have
to do that, or could she have just floated in the air?”). Children correctly said
that the character could make a possible, but not an impossible, choice. This
demonstrated that children’s responses depended on the nature of the action
(whether it was possible or impossible) not on character’s initial desire or on
the final outcome.

In another study (Chernyak, Kushnir, Sullivan, & Wang, 2011), we
asked children to reason about possible and impossible choices in the
future. Children heard three stories about characters that habitually per-
formed one activity, but one day wanted to try another. In one story, the
alternative action was possible (e.g. wanting to drinking milk instead of
juice). In another, it was physically constrained (e.g. wanting to walking
through a brick wall instead of around it). In the third story, the action was
epistemically constrained (e.g. wanting to draw a monkey without
knowing what one looks like). We asked children two questions about
each storyda Choice Question (“Can he do that?”) and an Action
Prediction Question (“Will he do that?”). As before, the results showed
that children distinguish between possible and impossible choices. That is,
children endorsed the characters choice and ability to act on his new stated
desire when it was possible but not when it was physically or epistemically
constrained.

4.2. Imagining Possible Alternatives
If all of the alternate possibilities for action were available to seedlike toys in
a toy boxdthen children would always have clear evidence for choice. But,
unfortunately, this is almost never the case. Do children need concrete
evidence of alternate possibilities in order to figure out what others choose?
Theoretical analyses suggest that even without concrete alternatives, infants
may infer that all intentional actions are nonrandom samples, and they may
even imagine (at least skeletally) the population of actions they might be
drawing from (Gweon, Tenenbaum, & Schulz, 2010; Lucas, Griffiths, Xu,
& Fawcett, 2009; Xu & Tenenbaum, 2007). This may explain why children
do not need multiple instances of the same action (i.e. a large sample) to
think of that action as a choicedwhy, for example, after reaching for one
single frog in the presence of a single duck, infants expect others’ actions to
be preferentially directed at that frog in the future (Sommerville &
Woodward, in press; Woodward, 1998).
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This also sets the stage for further developments. Preschoolers are
characteristically different from infants in their ability to imagine, to pretend,
and to describe alternative worldsdboth realistic and fantasticaldwhere
numerous possibilities for action exist (Harris, 1993; Lillard, 1993; Woolley,
1997). This could consequently lead to changes in understanding choice by
expanding the population of actions children consider as alternatives. Do
individual children judgments of the same action (choice/not choice)
depend on their ability to generate alternatives? Can inducing children to
imagine more (or fewer) alternatives in advance alter their conceptions of
others’ actions as choices? More generally, is there a relationship between
imagination and choice, and is it systematic? Rational? I think that all of
these questions warrant further exploration.

5. CHOICE AND AGENCY

Infants are creatures with limited agency, they spend most of their
time being carried around, put down, cared for, and fussed over by others.
What opportunities do infants have, then, to experience choice for them-
selves? Initially, there are probably none. However, quickly through the first
few months of life, infants begin to gain control of their bodies and move
voluntarilydthis includes the ability to direct eye gaze and, relatedly, to turn
their heads toward interesting sights and sounds (Aslin, 2012). The ability to
move the rest of the body voluntarily follows shortly after. It is remarkable,
and highly suggestive of some rudimentary understanding of agency, that
infants will use their limited capacity for free action whenever they can, for
example, working to exert control over interesting effects in the environ-
ment (Watson & Ramey, 1972).

Given these early tendencies to capitalize on every opportunity to exert
agency, it is unsurprising to find that young children’s beliefs about their own
agency are often overblown. Illusions of agency and control are found in
adults as well, but some studies suggest that are perhaps greater in childhood.
For example, when outcomes are weakly associated with their own actions,
preschool children consistentlymisjudge them as strongly associated (Kushnir,
Wellman, & Gelman, 2009; Kushnir & Gopnik, 2005). Older children also
show overconfidence in their own agency: In a study, Metcalfe, Eich, and
Castel (2010) investigated beliefs about agentic control in children (ages 8–10)
and adults using a computer game inwhich participants were asked to click on
X’s and avoid O’s. The game at times included random distortions that
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decreased control, time delays between clicks and effects (“lag”), and spatial
gaps between clicks and effects (“magic”) that increased the radius of accuracy
and therefore improved performance.Metcalfe et al. (2010) asked participants
to judge how “in control” they felt aswell as to rate their accuracy.While both
children and adults correctly judged their lack of control when their clicks
were distorted, children were more likely than adults to incorrectly judge
themselves to be fully responsible, especially for favorable outcomes. This
metacognitive error is consistent with similar findings showing that children
tend to conflate their contribution to collaborative activities (Foley &Ratner,
1998; Sommerville & Hammond, 2007).

How might these illusions of agency affect children’s understanding of
their own choices? Perhaps children feel overconfident that all of their
voluntary acts are choices, and they are impervious to constraints on their
own actions. This idea is supported by studies showing that children often
incorrectly state an intention to do what they did (“I meant to” or “I tried
to”) even when their actions are purely accidental (Shultz & Wells, 1985) or
physically forced (Montgomery & Lightner, 2004). Do children similarly
believe that they “choose to” act in accordance with constraintsdthat,
under constrained conditions, their actions could have been otherwise?

We investigated this question by giving children the experience of free
or constrained agency and then asking them to reflect on whether their
actions could have been otherwise (Kushnir et al., 2009). Children (ages 4
and 5) were asked to draw a series of shapes, thus they could experience their
actions and also see the effects of their actions (the drawings). Each child
drew two pictures. In the Free Drawing trial, children were asked to draw
a dot. In the Physically Constrained Drawing trial, children were asked to draw
a line, but the experimenter held their hand preventing its movement across
the page, resulting in a dot. Thus, the outcome in each trial was the same (a
dot), but the acts that produced that outcome were different (free vs.
constrained). We asked children the same question after each trial: “could
you have drawn the line?” and asked them to explain their response.
Children appropriately attributed their ability to do otherwise when their
actions were free and not when they were physically constrained; most also
appropriately explained the events that constrained them (e.g. “because you
were holding my hand” or “because I couldn’t move”).

These results suggest that preschoolers are not overconfident that their
own actions are always choices. One potential problem with this conclusion,
however, is that the physical constraintdforcing the child’s hand to stay in
one placedalso changed their physical experience of agency. It may be that
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4-year-olds are still overconfident that their actions are choices when their
experience of agency is unrestricted.

To investigate this further, we designed a different type of constraint, one
that did not limit the physical experience of agency. This experiment
(Chernyak, Kushnir, & Wellman, 2010) had the same basic set-up as the
previous one; there were two trials counterbalanced within subjects, Free
Drawing and Constrained Drawing. This time, however, we did not physically
control the outcome across trials, we simply told children to “draw some-
thing different” from the experimenter. Critically, this meant that children
had the same experience of agency across both Free and Constrained trials.
Indeed, each drawing made by the child was truly their own creationdsome
were simple shapes, some were faces, houses, etc. On each trial, the
experimenter also drew a picture. In the Free Drawing trial, children could
see what she drew. In the Constrained Drawing trial, the experimenter kept
her picture hidden from the child behind an occluder and revealed it only
after the child had completed his/her own drawing (before asking the choice
question). Then, children were asked if they could have drawn the same
shape as the experimenter (i.e. “could you have drawn the line?”), given that
there was/was not previously an occluder present. The results showed that
their understanding of this epistemic constraint was not distorted by their
experience of agency. In the Free Drawing trial, children said that they were
free to draw the experimenter’s picture. But in the Constrained Drawing
trial, they appropriately said that they were not free (and some even
explained whyde.g. “because I couldn’t see it”).

Combined, these studies indicate that children are responsive to situa-
tional constraints when reflecting on their own choices. The experience of
action may still play a role in their understanding, but it is mediated by other
considerations.

This brings up another related question: In the stream of everyday
activity, which actions stand out to young children as choices, and which do
not? We have begun to address this question using a preschool-friendly
adaptation of Savani et al.’s (2011) choice memory task for adults. In this
task, children are given the opportunity to make six choices: two for
personal gain (choosing a toy to play with and a sticker to take home), two
that are prosocial (choosing to share with a puppet and to avoid harming/
harm another puppet), and two neutral (choosing a color note card and
a crayon to write their names). After engaging in a short unrelated building
task, children are asked “can you tell me what choices you made here today?”
Preliminary results from 28 four-year-old children show that most children
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listed one or more of the six events and no other incidental events, indicating
that they understood the appropriate use of the word “choice.” Interest-
ingly, there were systematic differences between the itemsdchildren were
most likely to list the personal gain events and least likely to list the neutral
and prosocial events as choices. Further probes showed that this was not
a difficulty with memory for the events or salience. These data are
preliminary but offer a tantalizing possibility that preschool children apply
the word “choice” to their own actions quite narrowly, mainly when
referring to events that lead to personally beneficial outcomes.

6. SOCIAL CONSTRAINTS

So far I have made three claims about our early concept of choice.
First, that it begins with a rational understanding of possibility and
constraint. Second, that the details of what is/isn’t as a choice can change as
children develop more knowledge about different domain-specific
constraints on action and greater ability to imagine different possibilities for
action. Finally, young children reason about their own choices in a similar
waydrecognizing that sometimes they are free to choose and sometimes
they are constrained.

These beliefs are certainly foundational, but they are far from the whole
story. For one thing, we adults usually take the role of choice in these simple
scenarios for granted. When we reflect on choice at all, it is mostly when
faced with situations that make choice difficult, not easy, and constraints that
make some actions unfavorable, not impossible. Many of these difficulties
arise from conflict between choice and moral considerations, rule following,
or social obligations to other people.

It is not surprising that these difficult circumstances give rise to the most
individual and cultural variability in adult concepts of choice. It is also not
surprising that our sense of autonomy and independence from social
influences continues to develop well beyond the preschool years. Relevant
to concepts of choice are several findings about school-age children: it is
not until age 8 that children (at least Western children) begin to predict that
people will act on personal preferences over social rules (Kalish & Shi-
verick, 2004). It is also not until late elementary school that Western
(American) children begin to diverge from Eastern (Indian) children in the
prevalence of psychological, rather than situational, explanations for
actions (Miller, 1984). Parallel age-related and cultural differences can be
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seen in children’s motivation to act under conditions of choice or social
constraint (Leotti et al., 2010).

It seems likely, then, that developmental changes in children’s under-
standing of choice in these difficult circumstances continues to change over
the elementary school years and varies across cultures. In a study, we surveyed
4- to 11-year-old children in two culturesdthe USA and Nepaldabout
their understanding of choice in the face of social constraints (Chernyak et al.,
2011). Each child heard a series of stories about characters who desire to
perform simple, unconstrained actions (e.g. drinking milk instead of juice),
physically and epistemically constrained actions (e.g. floating in the air instead
of falling after a jump, doing something you do not know how to do), and
socially constrained actions. We included a broad range of social con-
straintsdfrom moral acts to social and artifact conventions, capturing the
range of social, moral, and obligatory understandings that are present as early
as the preschool years (Rakoczy, Warneken, & Tomasello, 2008; Smetana,
1981; Turiel, 1983).

For the “simple” items, all children across ages and cultures endorsed
freedom of choice to perform simple acts but recognized that acts that
violate physical and mental laws (such as gravity, object solidity, or
knowledge limitations) were constrained. This result is unsurprising, given
that prior work does not suggest cultural differences in what counts as
a constraint in either physical or psychological domains (Morris & Peng,
1994; Wellman, Fang, Liu, Zhu, & Liu, 2006).

Critically, however, the results showed developmental and cultural
differences in children’s views on “difficult” items that involved social
constraints. These differences immerged over time: Young children (ages 4–
7) in both cultures viewed moral and social obligations as constraints on
action equally oftendand only slightly less often than physical and epistemic
constraints. That is, they often said that the story characters could not act on
his/her desires in the face of social constraints. Divergence in responses
began around age 8 and continued to age 11. Americans 8- to 11-year-olds
were increasingly likely to say that characters could act freely on their desires
even if they go against social constraints. Nepalese 8- to 11-year-olds, on the
other hand, continued to say that social obligations would constrain choice.
These results nicely parallel age-related and culture-specific changes in other
aspects of children’s social cognition, such as causal attribution, self-concept,
moral reasoning, and autobiographical memory (Kalish, 2002; Kalish &
Shiverick, 2004; Miller, 1984; Schweder, Mahapatra, & Miller, 1987;
Wang, 2004).
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It seems that young children in both cultures, and older Nepali children,
construe social events as situational constraints, similar to physical and
epistemic limitations on actions. I would, however, caution against saying
that there are no developmental changes in Nepalese childrendit is highly
unlikely that they have a consistent view on social obligation as a constraint
on choice throughout life. For adults, social obligations complicate choice
regardless of culture. In support of this idea, current theories explain cultural
differences not by positing radically different concepts of choice but rather
by detailing where individuals (or cultures) place the act of choice with
respect to both internal desires and external social obligations. For some
theorists, culture shapes our desires themselves, and working for the benefit
of others becomes desirable (Miller, Das, & Chakravarthy, 2011). For others,
the sense of self (who is doing the “choosing”) may be confined to the
individual or may include group considerations (Kitayama et al., 2004).
There are surely developmental changes in both cultures, and our initial
measures are not sensitive enough to detect them fully.

7. CHOICE AS AN INTERNAL MENTAL ACTIVITY

Can it really be that the only changes that need to be explained
regarding developing concepts of choice are changes in the details of
constraint? I think not. From infancy into the preschool years, there seems to
be some continuity in children’s concepts of choice, namely that they view
choice as a necessary behavioral outcome of an internal motivation, such as
desire or preference. But we as adults do not see choice as necessarily
determined by desires. To us, choice is a mental activity, separate from other
mental activities, not always predicted by our apparent goals and desires. We
feel (and believe) that choice plays a causal role in determining action on it is
own accord, separate from other internal and external causal forces (though
of course interacting with them). Examples of this separation are easily found
by intuition: I understand that I can like one activity, but choose to do
another; I believe that though I follow a rule, I could choose to break it.
Thus, choice is something possessed by an agent; is separate from the agent’s
desires, goals, and beliefs; and allows agents the power to break from moral
or social obligation. This is precisely what it means to have an intuitive
notion of “free will.” And this intuition is present in all of usdpart of the
human experiencedregardless of culture or circumstance (e.g. Sarkissian
et al., 2010).

Developing a Concept of Choice 209



Perhaps, the biggest developmental puzzle is how children make this
conceptual leap. That is, how does choice become an internal mental, rather
than external behavioral, idea? How do children learn that choice is not just
something people do, but also something people have?

We are far from understanding how these changes happen. We can only
speculate crudely on the sorts of experiences children have that might be
relevant: experience acting in accordance with social obligation or personal
choice, observations of others complying with or violating social constraints,
the role of language in framing, and explaining actions. The critical next step
seems to be to specify more fully what evidence might be leading children to
change their beliefs about choice and investigate whether different concepts
emerge from different patterns of evidence. I think there are at least two
important sources of evidence that require further explorationdsocial
evidence from language and agentic evidence from having to navigate
difficult choices.

7.1. Social Evidence: The Language of Choice
Language can have profound effects on early conceptual learning, even
before children are producing much of it themselves. Moreover, all concepts
that are socially constructed (in whole or in part) engage linguistic evidence
to some extent (Harris & Koenig, 1996). What kind of language might
inform children’s understanding choice and constraint? The following three
seem important, though there are surely more:
1. Modal verbs.Modal verbs surely play a critical role in how children reason

about situational constraints on action; contrast between words such as can
and can’t, must and may can be understood as the amount of choice or
obligation in the acts described. The earliest understandings ofmodality fall
into two categories of meaning, which are usually lumped together as root
(or “agent-oriented”) modalities (Papafragou, 1998a, 1998b;Wells, 1979).
This includes dynamicmodalitydwhich primarily includes descriptions of
possibility (“I can play the piano”) and constraint (“I can’t see what’s over
there”)dand deontic modality, which refers to obligation (“You should
eat your peas,” “youmust take off your shoes in the house”). There is some
controversy surrounding the early meanings of root modal verbsdin
particular whether possibility (“can” and “will”) is understood earlier than
impossibility (“can’t and won’t). One area for new research is to examine
how children’s developing understanding of such words and their
understanding of choice and constraint are bi-directionally linked.
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For example, applying the word “can” in new situations might give
children ideas about possibility that they did not have before. On the other
hand, new understandings of possibility and constraint might lead children
to apply modal verbs accordingly and in new ways.

2. Forced choice desire statements. Children (at least, middle-class Western
children) are often given choice in simple situations, such as what they
would like to eat or to wear. Sometimes parents offer choices in an open-
ended way (e.g. “what would you like for breakfast today?”). Other
times, especially when children are very young, parents restrict their
choices to only two or three items (e.g. “would you like cereal or toast for
breakfast today?”). In fact, parents in our “more choice is better” culture
(Swartz, 2010) may feel these “two-item forced choice desire statements”
are a useful way to get children to comply with their wishes. For example,
when trying to get a child to go to bed: “do you want to brush your teeth
first or put on your pajamas first?” works better than “time for bed, go
brush your teeth!” Parents may inadvertently, through these statements,
be sending children themessage that every action is a choice between two
possibilities. An intriguing idea, then, is that wemight well find individual
differences in choice concepts based on how parents, caregivers, and
others verbally structure their statements about choice to young children.

3. The words “choice” and “choose.” There is no research systematically doc-
umenting when children use the words “choice” and “choose” in
everyday conversation and certainly no understanding of the semantic
development of thesewords at the level of detail of othermentalistic terms
such as want, know, think, believe (Bartsch & Wellman, 1995; Papafragou,
2001). In everyday observations of behavior, mental state verbsdchoice
includeddare not directly observable but actions are (Papafragou,
Cassidy, & Gleitman, 2007). This fact makes actions much more salient
and leads to the question of how children might learn mental verbs in
context without some help. Studies by Papafragou et al. (2007) showed
that syntactic cues and observational evidence combine for ideal learning
of verbs like think and know. The syntactic cues come from complement
structures (“She thinks that he wants a cookie”) and the observational
evidence comes from situations where thoughts (or knowledge states) are
in conflict with reality. It would be interesting to investigate whether (and
how) this works for choice as well. For example, could observations of
nonrandom sampling in lead children (or even adults for that matter) to
label those actions with the word “choice”?
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These semantic developments generate interesting questions related to
developing concepts of choice: How frequent are they in input to children?
In what situations do the most often emerge? Are there developmental and
cultural (cross-linguistic) differences, and do these relate systematically to
understandings of choice? How does language interact with statistical
evidence from observing actions, with conceptual knowledge about
constraints, and with agentic experience?

7.2. Agentic Evidence: Learning from Difficult Choices
As adults, our view on choice is that it acts as a mental “mediator”dthe
activity that is responsible for initiating action and, when necessary, resolving
conflicts between all of the various internal and external factors that influ-
ence us. It is when reasoning about constraints that make choices difficult,
rather than impossible, that we sense this conflict occurring. As discussed,
social obligations create such difficulty. Do we, after a long tiring day, take
the last seat on the bus or offer it to an elderly passenger? In offering the seat,
we believe that we have chosen another’s comfort over our own. Another
difficulty, coming from our internal rather than external circumstances,
arises from conflicting desires. For example, to successfully lose weight,
dieters must believe that they can choose to eat healthy food (even if they do
not like it) and also that they can resist the temptation to eat unhealthy foods
(even their favorite ones). Success at dieting rests critically on the belief that
we can, in a sense, separate choice from desire.

Ongoing investigations give us reason to suspect that preschool children
do not fully make this separation. The above-mentioned studies on social
constraint suggest that young children do not view kindness to others as
a choice; in reasoning both about past and future actions, they say that they
could not have done (and cannot do) otherwise in situations that pose harm
others, violate social rules, or put self-interest above the needs of others
(Chernyak et al., 2010, 2011). Also, preliminary results show that 4-year-
olds consistently deny that other people (or themselves) can choose to do
something they don’t want to do or choose not to do something they do
want to do. It is not until age 6 that they endorse the ability to act against or
inhibit desires. This belief is shared by both American and Chinese children,
thus may be culturally universal (Gopnik, personal communication).

What these studies suggest is that it takes time to grasp the fact that
difficulties are not hard-and-fast constraints. One way that children might
arrive at this idea is through experiencing and navigating internal conflict
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when making difficult choices themselves. For example, young children
have trouble inhibiting their own desires, but they want to follow the rules
of the adults (parents, teachers, etc.) that encourage them to do so. It is not
hard to imagine that this may be one conflict that is a regular occurrence in
children’s daily lives. Another conflict may arise when actions that benefit
the self-harm another; children’s natural empathic and prosocial tendencies
may make such choices difficult without any need for external (adult)
intervention.

Resolving these situations on their own might give children a sense that
something other than desire, obligation, or empathy are in control and thus
would lead them to posit another mental variable. Choice is the natural fit,
in particular if they are already imagining the various different possibilities
for action caused by these conflicting mental states. Thus, through their own
internal struggle with conflicting personal and prosocial desires, children
might invoke a placeholder (the “mediator” choice), which develops into
the adult intuition of free will.
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Abstract

The process of inductiondgeneralizing information obtained from limited samples
to inform broader understandingsdplays a critical role in learning across the life
span. Previous research on the development of induction has found important
developmental changes in one critical component of inductiondhow children and
adults evaluate whether a sample of evidence is informative about a broader
category. In particular, when acquiring knowledge about biological kinds, adults
view samples that provide diverse representation of a category (e.g. an eagle,
a penguin, and a robin, for the category birds) as more informative than a less
diverse sample (e.g. three robins) for drawing inferences about the kind. In contrast,
children younger than 8 years often neglect this feature of sample composition,
viewing both types of samples as equivalently informative. Is this a case of children
making irrational inferences? This chapter examines how these findings can be
reconciled with rational constructivist approaches to cognitive development,
focusing on (1) the role of the sampling context in determining how learners
incorporate information about sample composition into inductive inferences and
(2) how developmental differences in learners’ intuitive theories influence how they
make sense of new evidence. This chapter highlights how strong tests of rational
approaches come from incidences where children’s performance appears to be
quite nonnormative.
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1. INTRODUCTION

The theme of this volume is that children are rational constructivists,
that is, they actively try to make sense of their environment (the
constructivist part) and they do so by integrating new evidence with their
prior beliefs via a process that approximates probabilistic statistical inference
(the rational part; Xu, 2007). As shown by the numerous chapters in this
volume, as well as by the breadth of topics they cover, this perspective has
led to advances in our understanding of cognitive development across a wide
range of questions. A rational constructivist account of cognitive develop-
ment is compelling because it describes how domain-general learning
mechanisms can give rise to domain-specific knowledge, applies across
a wide range of learning tasks, and moves beyond old arguments between
nativism and empiricism to describe a learning process that both accounts for
prior knowledge and allows for change (Gopnik & Wellman, in press).

A central question in developmental psychology is whether the mech-
anisms by which we acquire knowledge are similar across development or
undergo fundamental change. The answer to this question from the
perspective of rational constructivism is clear: Although there may be
substantial changes in children’s knowledge and theories across develop-
ment, the learning processdhow beliefs are updated in response to new
evidencedrelies on similar mechanisms from early infancy (Denison, Reed,
& Xu, in press; Dewar & Xu, 2010) to childhood (Schulz, Bonawitz, &
Griffiths, 2007; Xu & Tenenbaum, 2007a, 2007b) through adulthood
(Kemp & Tenenbaum, 2009; Tenenbaum, Kemp, & Shafto, 2007). This
perspective challenges us to think critically about instances when children’s
responses to evidence are quite different from adult responses, and in
particular, instances where children’s inferences appeardat least at first,
second, and even third glancedto be irrational.

In this chapter, I examine an instance of apparent irrationality, focusing on
how children acquire generic knowledge about biological kinds. Generic
knowledge is generalizable knowledge about abstract kinds. For example,
generic knowledge about dogs includes that they bark, have four legs, and
have fur. Generic knowledge is not tied to specific individuals and need not
apply to every individual category member. Yet, because kinds cannot be
directly observed, much generic knowledge is acquired via induction from
individual instances (Rips, 1975). For example, upon learning that a particular
dog barks, a child might infer that dogs, in general, bark. This facilitates use of
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generic knowledge to make predictions about new instances. For example,
upon learning that a single bird has hollow bones, we can assume that other
birds will also have them; upon experiencing that a birthday party involves
bringing presents and eating cake, we can predict what will take place at other
parties in the future; upon learning that one girl likes sparkly stickers, we
might expect other girls to like sparkly stickers as well. As demonstrated by
these examples, these inferences are probabilistic and not always accurate. Yet,
the underlying mechanisms reflected heredcategorizing individuals as
fundamentally alike and using these categories to generalize knowledgedare
fundamental means by which wemake sense of, predict, and interact with the
environment. Although the acquisition of generic knowledge via induction is
an important process across many domains, here I focus on these issues
particularly for biological kinds. This focus follows much previous work on
induction and is of particular interest because of the rich, hierarchical structure
of the biological world (Atran, 1990).

2. THE PROBLEM OF INDUCTION AND A RATIONAL
SOLUTION

Imagine that a child encounters a dog for the first time (perhaps, her friend’s
golden retriever) and learns that he is friendly and likes to be petted. How far
should she generalize this knowledge? Certainly, it seems reasonable to
generalize this knowledge to other encounters with this particular dog.
Thus, if she encounters the dog again the next day, she can confidently go
right up and pet him. But, how much farther should she generalize this
knowledge? Should she now assume that other golden retrievers are friendly
too, so that she can confidently approach and pet other golden retrievers that
she meets? What about other dogs more generally? Or other four-legged
furry animals? Clearly, some generalization beyond the individual is war-
ranteddassuming that other golden retrievers will be friendly is a pretty
good bet. But, generalizing too far could get the child into trouble; if she
generalizes to all dogs, she could find herself in a dangerous situation if she
encounters a vicious pit bull, and if she generalizes to all four-legged furry
animals, even more so if she encounters a mountain lion.

Determining how far to generalize information is a basic problem of all
inductive inference. Rational constructivist approaches suggest one
perspective on how such inferences might be constrained. For example,
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Xu and Tenenbaum (2007a, 2007b) demonstrated that children are attentive
to the composition of evidence within a sample, can infer the population
that particular samples represent, and then restrict their generalizations to the
represented population. They examined these processes in a word-learning
context, another key inductive challenge of childhood. On their task,
children were shown an array of different kinds of dogs, for example,
including a range of subtypes (golden retrievers, basset hounds, Dalmatians,
etc.) and were shown a sample of three of these dogs labeled as “blickets.”
On this task, children attended closely to the sample composition to
determine how far to extend the word blicket on subsequent test items. If
children were shown three golden retrievers labeled as blickets, they
extended the term only to other golden retrievers. In contrast, if they were
shown three dogs of different subtypes, they extended the word to the basic
level.

From a rational perspective, children’s performance in this task can be
understood as follows. First, when shown the very first piece of evidence,
children might consider multiple hypotheses: (1) that blicket is the name of
the subtype “golden retriever” or (2) that blicket is the name of the basic-
level category “dog.” Perhaps they consider these two hypotheses to be
approximately equally likely, before they are exposed to further evidence.
Second, after they are exposed to further evidence (e.g. two more golden
retrievers or two different dogs), they evaluate the likelihood that they
would have seen each set of evidence, under each of the initial hypotheses.
Whereas both sets of evidence are consistent with the hypothesis that blicket
refers to “dog,” the observation of a sample of all golden retrievers under this
hypothesis is unlikely. Xu and Tenenbaum suggested that children would
view this sample as a “suspicious coincidence.” In other words, the likeli-
hood of the obtained sample is higher under the hypothesis that blicket
refers to golden retriever than the hypothesis that blicket refers to dog,
leading children to favor the narrower hypothesis in this case.

The extension from this word-learning example to the acquisition of
generic knowledge ought to be straightforward. For example, if the child
observed that three golden retrievers are friendly and like to be petted, she
should feel confident that the property “is friendly” applies to golden
retrievers, but less sure that it applies to dogs generally. In contrast, if she
observed that three dogs of different subtypes are friendly and like to be
petted, she should extend the property to the basic level. Extensive prior
work suggests, however, that in just these types of contexts, children’s
inferences often appear to neglect these dimensions of sample composition.
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Instead, children have been found to generalize to basic-level categories
equally often based on less representative evidence (the three golden
retrievers, hereafter, the “nondiverse sample”) and more representative
samples (the three different dogs, hereafter, the “diverse sample”), as
reviewed below. Does this neglect of sample composition in children’s
reasoning reflect irrationality? Does this indicate, for example, that they fail
to update the probabilities of their initial hypotheses following differing
samples of evidence? To begin to address these questions, I first review the
evidence that children often fail to consider sample composition when
acquiring generic knowledge about biological kinds via induction.

3. EVIDENCE THAT CHILDREN HAVE DIFFICULTY
BEING RATIONAL

Extensive prior work shows that adults’ are very sensitive to sample
composition for induction involving biological kinds. In particular, adults
view samples that provide diverse representation of a category (as in the
three dogs of different subtypes above) as supporting conclusions about the
kind (dogs), but samples that provide less diverse representation of a category
(as in the three golden retriever sample above) as supporting narrower
inferences. For example, as reviewed below, adults view a diverse sample
(e.g. a penguin, an owl, and a robin) as more informative than a nondiverse
sample (e.g. three robins) for drawing inferences about abstract categories
(e.g. birds). These effects have been termed “diversity effects” and are
a primary feature of adult inductive inference that models of induction have
aimed to explain (Heit, 2000).

Adults robustly consider sample diversity when evaluating samples of
evidence. Osherson, Smith, Wilkie, Lopez, & Shafir (1990) found that adults
rated inductive arguments that built on diverse premises as stronger than
inductive arguments that built on less diverse premises. For example, an
argument supporting a general conclusion (e.g. “all mammals have four-
chamber hearts”) was rated as stronger when it built on premises that
included a diverse sample of mammals (e.g. “dogs and whales have four-
chamber hearts”) rather than a less diverse sample of mammals (e.g. “dogs
and wolves have four-chamber hearts”). Also, evidence selection tasks show
that adults seek out diverse evidence. For example, to test if a property is true
of mammals, adults prefer to examine diverse over nondiverse samples
of mammals (Kim & Keil, 2003; Lopez, 1995; Lopez, Atran, Coley, Medin,
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& Smith, 1997; Rhodes, Brickman, & Gelman, 2008; Rhodes, Gelman, &
Brickman, 2008). Sample diversity is not the only criterion that adults use to
evaluate evidencedthey can also rely on causal knowledge, for example, or
other specific background knowledge that is relevant to the question at hand
(Medin, Coley, Storms, & Hayes, 2003). Yet, sample diversity is an
important factor that adults consider across many different types of experi-
mental tasks (Heit, 2000; Lopez et al., 1997). Critically, basing broader
inferences on diverse samples is consistent with computational accounts of
rational statistical inference (Heit, 2000; Tenenbaum et al., 2007).

Yet, in contrast to adults’ robust consideration of sample diversity, young
children have been found to neglect sample diversity across many inductive
reasoning tasks. In many previous studies, children younger than 9 years
have treated diverse and nondiverse samples as equivalently informative for
inferences about kinds. For example, children between the ages of 5 and
8 years are just as likely to infer that “all birds have hollow bones” after
learning that three nondiverse birds have hollow bones (e.g. three robins) as
learning that three diverse birds have hollow bones (e.g. an eagle, an owl,
and a robin; Gutheil & Gelman, 1997; Lopez, Gelman, Gutheil, & Smith,
1992; see also Li, Bihau, Li, Li, & Deak, 2009). Younger children also do not
consider sample diversity when selecting evidence; for example, 6-year-olds
are just as likely to select a nondiverse sample (e.g. two Dalmatians) as
a diverse sample (e.g. a Dalmatian and a pit bull) to find out if something is
true of a category (e.g. dogs; Rhodes, Brickman, et al. 2008; Rhodes,
Gelman, et al., 2008). In these studies, diversity effects have been found to
emerge around ages 8–9 and to become more robust by ages 10–11.

Children’s failure to recognize the informative value of diverse evidence
does not relate to difficulty with the task demands in these experiments or to
general problems noticing or processing information about sample diversity.
For example, Rhodes, Gelman, et al. (2008) showed that although 6-year-
olds could reliably distinguish diverse from nondiverse sets, they still did not
prefer to base generalizations on information obtained from diverse samples.
Also, Rhodes, Brickman et al. (2008) showed that 6-year-olds do apply
some systematic strategies to selecting between samples on the types of
questions used in these experiments. For example, 6-year-olds preferred to
base inferences on samples containing typical, over atypical, exemplars. Yet,
although children showed some systematic criteria for evaluating samples,
they once again did not factor sample diversity into these judgments.

More generally, Heit & Hahn (2001) and Shipley & Shepperson (2006)
provided evidence that children can distinguish diverse from nondiverse
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samples and reason about them systematically. For example, Heit and Hahn
presented 5-year-olds with two samples of dolls, including three diverse
dolls belonging to one character and three nondiverse dolls belonging to
another character. Participants were then shown a different doll and were
asked to predict to whom the doll belonged. On these questions, children
reliably responded that the target toy belonged to the character that owned
the diverse set of toys. These findings demonstrate that young children can
recognize sample diversity and sort based on diversity. They do not,
however, indicate that young children view diverse samples as a stronger
basis for induction. Instead, children may solve these problems by recog-
nizing that diverse items better match diverse (rather than nondiverse) sets of
evidence. Similarly, Shipley & Shepperson (2006) reported that preschool
children prefer to test toys from two subclasses (e.g. one blue whistle and one
red whistle) in order to determine if whistles “make good party favors.”
Although this task also reveals that young children recognize and reason
about sample diversity, because participants were not asked to make an
inference about a larger set (e.g. whistles not included in either specific
subclass), this study also does not provide evidence that young children use
sample diversity to determine whether a sample provides a good basis for
broader generalizations (i.e. about a larger category or unobserved instance).

Thus, children’s failure to consider sample composition when evaluating
samples of evidence does not relate to task demands, difficulty noticing or
processing diversity, or more general difficulty making decisions based on
sample diversity. As shown in the work by Xu and Tenenbaum (2007a,
2007b) discussed above, as well as other recent works, it is also clear that
children’s failure to consider sample diversity does not relate to general
problems in statistical reasoning or, in particular, reasoning about how
samples represent populations. Xu and colleagues have shown that quite
sophisticated abilities reasoning about the relation between samples and
populations emerge early in infancy. For example, infants expect a sample
drawn from a bowl containing equal proportions of blue and yellow balls to
contain equal proportions of blue and yellow and are surprised if the
obtained sample is all blue (Xu & Denison, 2009; Xu & Garcia, 2008).
Infants are not applying a simple matching strategy to solve these tasks; their
expectations break down if they know the sampler has a preference for blue,
for example, suggesting that they only expect samples to accurately represent
populations if they are drawn randomly.

Given these statistical abilities for reasoning about the relation of samples
to populations, it is surprising that children do not consider sample
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composition when acquiring new generic knowledge via inductive
reasoning. Children ought to realize, for example, that a diverse sample of
dogs provides better representation of the category dogs than a nondiverse
sample. Why do children fail to consider sample composition during cate-
gory-based induction? Does this failure indicate that the mechanisms that
support the acquisition of generic knowledge in childhood are somehow less
rational than those that do so in adulthood? To tackle this issue and consider
its implications for cognitive development, I next consider two factors that
may enable children to consider sample composition in a rational manner,
toward the aim of better understanding the circumstances when they do not.

4. TWO FACTORS THAT (MAY) INFLUENCE
RATIONALITY

4.1. The Learning Context
A critical difference between the category-based induction studies reviewed
above and Xu and Tenenbaum (2007a, 2007b) is the purpose of the sample
being presented. In Xu and Tenenbaum, an intentional adult selects the
samples in order to show the child a new concept. Thus, the goal of the
sample is information communicationdthe adult has some information (e.g.
the meaning of the word blicket) that the child does not have, and the adult
selects a sample to demonstrate the concept. In a broad sense, this interaction
represents a pedagogical exchange. From this perspective, pedagogical
learning does not require a formal teacher, but instead is defined by the
epistemic gap between the teacher and the learner, as well as the intent of
the teacher to communicate information to the learner. In contrast, in the
induction experiments summarized above, children were not taught prop-
erties on purposefully presented samples; rather they were asked to discover
new information via induction. Thus, one possibility is that sample
composition plays different conceptual roles in the discovery versus commu-
nication of new knowledge.

During information communication (teaching), efficient teachers
purposefully select evidence to create samples that clearly and unambigu-
ously represent concepts of interest (referred to as pedagogical sampling, Shafto
& Goodman, 2008). For example, if a teacher wants to teach about
a property of birds, it seems more effective to present a sample containing
three different kinds of birds (e.g. a canary, a peacock, and an eagle) than
a sample containing only one kind of bird (e.g. three canaries). The latter
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sample is ambiguous regarding whether the property applies to all birds or
only to canaries, whereas the diverse sample more efficiently communicates
that the property applies to all birds. Shafto and Goodman (2008) showed
that adults assigned to teaching roles readily engage in this kind of effective
samplingdwithout explicit instruction to do sodpicking samples that will
most unambiguously and efficiently communicate the underlying distribu-
tion to the learner. Furthermore, adults assigned to learner roles assumed that
teachers would provide informative samples, and this assumption helped
them learn more efficiently.

During information communication, sample composition provides
a window into the communicative goal of the teacher. For example,
a learner may assume, “The teacher is trying to teach me something. She had
all these dogs to choose from, but she chose three of the same kind. That
decision was purposeful and intended to help me learn. She must be trying
to tell me that this is about just that kind of dog.” Thus, children’s early
emerging abilities to reason about sample composition in pedagogical
contexts may stem from an intuitive sense of how sampling behavior reflects
communicative goals. In this manner, the “suspicious coincidence” noticed
by the children in Xu and Tenenbaum (2007a, 2007b) is suspicious with
respect to the adult’s intent (e.g. “if she were trying to teach me about all
dogs, it would be odd for her to pick this narrow sample”) not to the state of
the world (e.g. not “if this were true of all dogs, it would be odd that I’ve
only encountered this narrow sample).

In contrast, when learning involves knowledge discovery instead of
communication, sample composition is relevant to testing hypothesis about the
world. A diverse sample of dogs provides a strong test of a hypothesis about
dogs as a kind, for example, whereas a nondiverse sample of dogs provides
a weak test (Heit, Hahn, & Feeney, 2005). Thus, one possibility is that
children recognize sample composition as a window into the communica-
tive intent of a teacherdand thus consider sample composition in a rational
manner in these casesdbut not as an indicator of how informative a sample
is for the process of information discovery.

Rhodes, Gelman, and Brickman (2010) directly tested this hypothesis,
using a method similar to Xu & Tenenbaum (2007a). In this work, 5-year-
old children and adults were exposed to an array of animals from a basic-
level category (e.g. an array of dogs). Participants were shown samples to
help them learn a new fact about the animal category (e.g. to find out which
animals have an epithelium inside). Across condition, samples were pre-
sented either by an animal expert who knew a great deal about the animals
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or by a novice who did not know anything about them (see Kushnir,
Wellman, & Gelman, 2008). In the Expert condition, across items, the
expert either presented a diverse sample of dogs (a basset hound, Dalmatian,
and golden retriever) or a nondiverse sample of dogs (three basset hounds),
with the clearly stated intention of teaching “which animals have an
epithelium inside.” In the Novice condition, across items, the puppet
checked various animals (the same exemplars as were shown by the Expert)
to discover if they had an epithelium and reported the results to the child.
Because the novice did not know which animals had the property ahead of
time, it should have been clear to children that they were not selected with
particular communicative intent. The aim of the Expert condition (from the
child’s perspective) was information communication, whereas the aim of the
Novice condition was to discover the information along with the puppet.
Across conditions, children were exposed to identical evidence presented by
a puppet; the conditions varied only in whether the sample was systemati-
cally selected by a knowledgeable teacher to communicate information or
by a novice aiming to discover information.

Indeed, in the Expert condition, preschool-age children inferred that the
property applied only to the subordinate category (e.g. only to Dalmatians)
when they were shown a nondiverse sample, but to the basic-level kind
when they were shown a diverse sample. In contrast, in the Novice
condition, 5-year-olds extended the property to the basic level following
both types of samples. Adults, in contrast, showed the same pattern across
both conditionsdthey reliably extended to the subordinate following the
nondiverse sample and to the basic level following diverse samples, regardless
of who presented the sample. These data suggest that preschoolers consider
sample composition during learning events where the learning goal involves
information communication, but not information discovery. In contrast, adults
consider sample composition in both types of learning contexts.

In a follow-up study, Rhodes et al. further compared 5-year-olds
understanding of sample composition for knowledge communication versus
discovery by placing the children themselves either in the position of
“teacher” or “scientist.” Here, children were asked to select samples either
to teach someone else that a basic-level category contains a novel property
(e.g. that all dogs have an epithelium inside) or to discover whether a basic-level
category contains a novel property (e.g. whether all dogs have an epithelium
inside). Children were offered a choice between diverse and nondiverse
samples of dogs. In the teacher condition, children indeed reliably selected
the sample that provided diverse representation of the category, whereas in
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the scientist condition, children responded at chance. These data provide
further evidence that children recognize the role of sample composition in
effectively communicating information, but not as an indicator of the
strength of samples for hypothesis testing.

These studies help to resolve the apparent discrepancy between Xu and
Tenenbaum and studies of category-based induction, by suggesting that
children recognize the role of sample composition in information
communication prior to information discovery. Yet, they do not address
why children fail to consider sample composition during information
discovery on these tasks. Although showing that children engage in rational
inference in pedagogical contexts in an important step to characterizing how
children acquire generic knowledge, much knowledge acquisition occurs in
the absence of knowledgeable teachers who purposefully select samples for
children. Thus, it is critical to examine why children fail to consider sample
composition when they discover samples of evidence on their own, with an
aim of resolving this pattern with the general rational constructivist
framework.

4.2. Intuitive Theories
To consider why children fail to overlook sample composition when
selecting their own samples to discover new generic knowledge, it is useful
to consider their intuitive theories of the biological world, which ought to
shape the types of evidence they view as relevant to these problems. Toward
this aim, Rhodes and Brickman (2010) proposed that children have abstract
expectations that biological kinds are highly homogenous (see Atran, 1990)
and that these expectations lead them to treat diverse and nondiverse samples
from a category as interchangeable.

Expectations of category homogeneity entail the extent to which people
assume thatddespite superficial differencesdall members of a category are
fundamentally alike. There is abundant indirect evidence that young chil-
dren expect some categories to be more homogenous than adults do. For
example, young children (aged 4–7 years) have strong expectations that
the members of natural kind categories will demonstrate category-typical
propertiesdeven in the face of contrasting individuating informationd
whereas older children (aged 10 years) and adults allow for more individual
variation (Berndt & Heller, 1986; Taylor, 1996; Taylor, Rhodes, & Gelman,
2009). Also, preschool-age children are more likely than adults to believe
that categories are objective and coherent (Kalish, 1998; Rhodes & Gelman,
2009) and to infer that a property observed in one individual will be found in
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other members of a kind (Gelman, 1988; Rhodes & Gelman, 2008). Young
children also often neglect subtypes within basic-level categories (e.g. they
fail to recognize basset hounds and Dalmatians as meaningfully different
kinds of dogs, Waxman, Lynch, Casey, & Baer, 1997), perhaps because they
view basic-level categories as highly coherent.

Gelman (2003) has argued that cognitive biases to assume that basic-level
categories are homogenous play a powerful role in early conceptual
development and propel knowledge acquisition by allowing children to
overlook superficial differences and focus on underlying regularities (e.g. in
order to learn the conceptual category dog, children must overlook super-
ficial difference in size and color and focus on the properties that all dogs
share). Yet, focusing on similarities may also lead children to overlook
meaningful and important variation (Gelman & Kalish, 1993). From this
perspective, an important component of conceptual change across child-
hood entails increased consideration of within-category variability.

How might developmental differences in expectations about within-
category homogeneity and variability influence how children and adults
evaluate samples during inductive reasoning? Rhodes and Brickman (2010)
proposed that children’s strong expectations that biological categories are
homogenous lead them to be less discriminating about whether a given
sample of evidence is informative (e.g. because children assume that all dogs
are fundamentally alike, it does not matter to them which particular dogs are
observed to support an inference about the category as a whole; Rhodes,
Brickman, et al., 2008a, 2010).

To test this hypothesis, Rhodes and Brickman (2010) showed 7-year-
olds and adults a set of perceptually and taxonomically diverse birds.
Children assigned to a Variability condition were prompted to consider
differences among birds (e.g. that some fly and some do not fly, some hunt
for food and some dig for food, etc.). Children assigned to a Similarity
condition saw the same visual stimuli but were prompted to consider
similarities (e.g. that all birds have feathers, all birds feed their babies mashed
up foods, etc.). Children assigned to a Control condition were shown the
same visual stimuli, but were not prompted to think about any properties.
Following the primes, children completed measures of their consideration of
sample diversity in evaluating samples of evidence. For example, they were
asked to select between examining diverse samples (e.g. a robin and a blue
jay) or nondiverse samples (e.g. two robins) to test whether a novel property
is true of a category (e.g. “to find out if birds have gizzards inside”). Children
in the Variability condition reliably chose diverse samples, whereas children
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in the Similarity and Control conditions performed at chance. Adults
selected diverse samples in all conditions. This study experimentally
demonstrates that increasing attention to within-category variability
increases diversity-based reasoning among children.

The effect of the Variability primes was quite robust. The Variability
primes improved performance on multiple measures of diversity-based
reasoning and increased diversity-based reasoning for both the animal
categories presented in the prime (e.g. birds) and for other animal categories
(e.g. pigs, frogs). Thus, the prime appeared to function not by increasing
children’s specific knowledge about birds, but by challenging children’s more
generalized expectations about the homogeneity of animal categories. The
effect of the Variability primes was also appropriately selective, however. A
follow-up control study documented that although Variability primes
increased diverse sample selections for inferences about broad categories (e.g.
birds), they did not do so for inferences about specific subtypes (e.g. robins),
for which picking a nondiverse sample (e.g. two robins) would be more
informative. Thus, the Variability primes did not lead children to view
diversity as better across the board, but rather, to engage in diversity-based
reasoning in a normative manner.

The data reviewed above suggest that young children overlook sample
composition when acquiring new generic knowledge about biological kinds
because they have strong expectations that biological categories are
homogenous. Is this neglect of sample composition irrational? Some models
(Kemp & Tenenbaum, 2009; Tenenbaum et al., 2007) suggest a possible
way to reconcile this finding with a rational constructivist perspective. These
models indicate that domain-specific intuitive theories shape the prior
probabilities that people bring to learning events. As in all rational inference,
from this perspective, inferences result from the interaction between
participants’ prior expectations (e.g. their prior estimate of the probability
that a property found in one bird will be found in all birds, for example) and
the new evidence that they receive. As described by Kemp and Tenenbaum
(2009), these prior expectations can stem from intuitive theories or
conceptual biases. Thus, developmental differences in these prior probability
estimates (with younger children having higher baseline prevalence esti-
mates, reflecting their assumptions that all category members are funda-
mentally alike) could explain developmental differences in sensitivity to
sample diversity.

Yet, this possibility requires direct examination. This framework suggests
that developmental differences in consideration of sample composition
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relate to differences in initial theories (i.e. prior expectations about how
properties are distributed across categories), not differences in learning
mechanisms. If so, although children initially view a hypothesis that
a property applies to a basic level as more likely than a hypothesis that
a property applies only to a subtype, they should be able to update their
beliefs in response to new evidence if that new evidence is compelling
enough. Yet, direct evidence that they do so is needed.

5. RATIONAL IN THE END?

Mechanisms for rational statistical inference are clearly in place early in
childhood. The data summarized above, as well as in other chapters of this
volume, indicate that these mechanisms contribute to learning across a wide
range of content domains and learning challenges. In the present context,
they appear to guide how children acquire generic knowledge via
communication from experts.

So, are children’s responses to evidence as they acquire generic knowl-
edge via induction rational in the end? This remains an open question.
During information communication, children use sample composition to
constrain their inferences, consistent with rational models. Yet, whether
they do so for information discoverydwhen they select samples themselves,
when samples are produced via procedures that lack transparency, or when
samples are produced in the absence of communicative goalsdremains
much less clear. These issues will be important to explore in future work,
both to consider how learning mechanisms vary across pedagogical and
nonpedagogical settings and to determine the scope of conceptual learning
that can be accounted for by a rational constructivist perspective.

Whereas much of the work on rational constructivism has focused on
identifying developmental continuities, rational constructivism also provides
a useful framework for considering developmental differences. This
perspective prompts us to consider such differences very carefully and to
determine whether differences reflect changes in the intuitive theories or in
the mechanisms by which beliefs are updated in response to new evidence.
The example of category-based induction discussed in this chapter illustrates
that a key test of these models may lie in the cases where children’s responses
to evidence appear quite different from adults’ responses.

The research reviewed in this chapter also has implications for the role of
pedagogical cues in the acquisition of generic knowledge. Some have argued
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that pedagogical cues serve to signal to children that information is generic
(Csibra & Gergely, 2009). From this perspective, when children realize they
are being taught by a knowledgeable teacher, they assume that the
demonstrated information is generalizable. Although the present studies are
consistent with the broad proposal that children respond differently to
information in the presence of pedagogical cues, these data suggest an
alternate conclusion regarding the particular effects of these cues. The data
reviewed above suggest that children assume that information is generic in
the absence of pedagogical cues. In particular, as shown in the Novice
condition of Rhodes et al. (2010), in the absence of pedagogical cues,
children generalized the information to basic-level categories following both
diverse and nondiverse samples. The Expert condition suggests that peda-
gogical cues functioned to help children properly restrict their inferences, not
to broaden them. Similarly, Rhodes and Brickman (2010) indicated that
children have strong assumptions of category homogeneity (that the
members of categories share many generic features). These data are
consistent with the proposal that children treat certain information as generic
by default (Cimpian & Erickson, 2012). From this perspective, pedagogical
cues are not necessary for children to treat information as generic, but rather
to guide them to when they should apply information more narrowly. More
generally, pedagogical cues may not signal either generic or specific infor-
mation per se, but rather that a sample is being selected purposefully and thus
that children should pay attention to sample composition and generalize
appropriately. Resolving the discrepancies across these perspectives is an
important area for future work.
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Abstract

The question of how human beings acquire exact-number concepts has interested
cognitive developmentalists since the time of Piaget. The answer will owe something
to both the rationalist and constructivist traditions. On the one hand, some aspects of
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numerical cognition (e.g. approximate number estimation and the ability to track small
sets of one to four individuals) are innate or early-developing and are shared widely
among species. On the other hand, only humans create representations of exact, large
numbers such as 42, as distinct from both 41 and 43. These representations seem to be
constructed slowly, over a period of months or years during early childhood. The task
for researchers is to distinguish the innate representational resources from those that
are constructed, and to characterize the construction process. Bayesian approaches can
be useful to this project in at least three ways: (1) As a way to analyze data, which may
have distinct advantages over more traditional methods (e.g. making it possible to find
support for a null hypothesis); (2) as a way of modeling children’s performance on
specific tasks: Peculiarities of the task are captured as a prior; the child’s knowledge is
captured in the way the prior is updated; and behavior is captured as a posterior
distribution; and (3) as a way of modeling learning itself, by providing a formal account
of how learners might choose among alternative hypotheses.

1. THE PROBLEM

1.1. Exact-Number Concepts
This chapter is concerned with how children learn concepts for exact
numbers, especially numbers above four. Other writing on this topic has
used the terms “natural numbers” or “positive integers,” both of which are
also correct. The natural numbers are the “counting numbers”done, two,
three, . . . and so on. They are a subset of the whole numbers (which are
comprised of the natural numbers and zero), which in turn are a subset of the
integers (the whole numbers plus negative numbers, excluding fractions and
decimals), which are a subset of the rational numbers (i.e. anything that can
be expressed as a ratio of two integers), which are a subset of the real
numbers (i.e. anything that can be plotted a number line, including all
rational numbers, plus nonterminating, nonrepeating decimals such as p and
the square root of 2).

We use the term “exact numbers” for a few reasons. First, the term
“natural number” is occasionally (and mistakenly) taken to mean that these
concepts are “natural” in the sense of being innate, unlearned, or shared with
other species. Not so. Exact numbers such as 42 (and even those as low as
five and six) are not “natural” in that sense. They are constructed during
childhood, based on cultural input. And as far as we know, they are unique
to humans (really large number concepts, such as the concept 2014, certainly
seem unique to humans).

The terms “natural number” and “positive integer” may also leave some
readers confused about what, exactly, we think children know. Adults with

238 Barbara W. Sarnecka and James Negen



some mathematical training may have an explicit concept “natural number,”
which includes beliefs such as, “The natural numbers start at one and go on
forever; there is no highest natural number” or, “Adding or multiplying any
two natural numbers together produces another natural number.” But we
want to be clear in this chapter that we are not claiming that children have
such explicit knowledge about “natural numbers” or, “positive integers” as
mathematical objects.

Instead, we are interested in children’s ability to represent exact
numerical quantities of five or more. How can a child represent the infor-
mation that there are, for example, 8 blocks in a tower, 12 friends on the
playground, or 24 cookies in the oven? That is, how are the words “eight,”
“twelve” and “twenty-four” understood by the child?

Children do represent and reason about numbers long before they
understand the formal properties of the natural numbers or the positive
integers in an explicit, mathematical sense. Consider the following quota-
tions, both from the same child (the first author’s 6-year-old son, JS). The
first quotation demonstrates that JS represents at least some natural numbers.
The second demonstrates his confusion about countable infinity, which is
a property of the natural numbers.
(1) JS (age 5 years, 11 months): “If you have a thousand dollars and you lose

a hundred, that’s the same as if you have ten dollars and you lose one.”
(2) JS (age 6 years, 6 months): "Luca said that a googolplex is the highest

number, but he was wrong. There is no highest number.”
BWS: “Yes, because you can always add one to any number and get
a higher one."
JS: "Until infinity."
BWS: "Yes."
JS: "And after infinity, it starts from the highest negative number, and
counts back."
BWS: "It does what?"
JS: “It counts all the way back to zero. It’s a big loop. And infinity and
zero are the ends.”
As these examples show, a child can represent natural-number concepts

without explicitly representing the formal properties of the natural
numbers as a set. To avoid giving the impression that we are talking about
the latter, meta-numerical type of knowledge, this chapter uses the terms
exact numbers and “exact-number concepts” for the mental representations
of exact numerical quantities such as five, six, seven, eight, and higher
natural numbers.
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1.2. What Makes the Acquisition of Exact-Number
Concepts Interesting?
Are numbers a cultural invention? It seems indisputable that at least some
are. Take the number p, for example. No one knows anything about p
until they hear about it from someone else, and there are plenty of people in
the world who never acquire a concept of p at all. (Of course, whoever
originally formulated the concept p was an exception to this statement, but
it is true for all the rest of us.)

On the other hand, research over the past 40 years has shown that other
types of numerical concepts are not cultural inventions, but are the outputs
of cognitive systems that have evolved through natural selection. Most
obviously, the approximate number system (often abbreviated ANS) allows
humans and other animals to represent approximate numerical quantities of
at least up to several hundred.

Separately from the ANS, humans and other animals also have the ability
to create mental models for small sets of up to three or four individuals. This
ability is sometimes called parallel individuation. As that name suggests, this
is not a number system, but a system for identifying and tracking individuals
(which may be objects, noises, actions, etc.) It is not a number system
because it does not include any symbol for the number of objects in the set.
Instead, it maintains a separate symbol for each individual being tracked.
Number is represented only implicitly.

What makes exact-number concepts interesting is that a number like 42
cannot be represented by either of these innate systems. The ANS is only
approximate, and parallel individuation only works for up to three or four
items. So, how can numbers like “exactly 42” be represented? The answer is
that the representational system supporting the concept “exactly 42” is
constructed over a period of months or years during early childhood.

This is why any plausible account of the origins of exact, large number
concepts must be both rationalist and constructivist. It must be rationalist in
specifying the role played by those innate systems that represent some
numerical content, and it must be constructivist in explaining how we go
beyond those innate systems. Following Carey (2009), we will argue that
exact-number concepts are a cultural invention, which must be redis-
covered/reconstructed by each individual child during development, based
on cultural input. The exact-number system, once acquired, has vastly more
representational power than the innate systems, and forms the basis for all
later-acquired number concepts (e.g. negative numbers, rational numbers,
real numbers, etc.).
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Finally, we take up the question of how Bayesian inference can be
useful to this project, and we discuss three ways that it has already been
used (Table 9.1). First, Bayesian methods can be used to analyze data.
Depending on the data set and the question being addressed, these methods
may have advantages over more traditional, frequentist methods. In the
example we discuss, Bayesian inference makes it possible to find positive
support for the null hypothesis, rather than simply rejecting or failing to
reject the null. This can sometimes be a distinct advantage. Second,
Bayesian methods can be used to model subjects’ performance on specific
tasks. In this case, peculiarities of the task are captured as a prior; the
subject’s knowledge is captured in the way the prior is updated; and the
subject’s observed behavior is captured in the posterior distribution. Third,
Bayesian methods can be used to model learning itself. In this case, Bayes
provides a formal account of how learners might choose among alternative
hypotheses.

Table 9.1 Three ways of using Bayesian inference in this research

Application Prior Evidence Posterior

Bayesian data
analysis (to
understand
data)

Prior belief about
population
parameters (means,
standard
deviations, etc.)

Data collected in an
experiment

Updated belief
about what
the population
parameters are
likely to be

Bayesian task
modeling (to
understand
a task)

Contaminant
influences on the
child’s behavior:
task demands,
pragmatics, order
effects, etc.

The child’s
knowledge and/
or perceptions

Probabilistic
description of
how a child
will behave in
the task with
a given state of
knowledge
and/or
perceptions

Bayesian concept-
creation
modeling (to
understand
how a concept
could be
acquired)

Prior preferences in
a space of possible
truths about the
world

Typical input that
a child would
receive

Inferences about
the world that
the child is
likely to
make (i.e.
knowledge
that the child
develops)
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2. WHY ANY REASONABLE ACCOUNT OF THESE
PHENOMENA MUST BE RATIONALIST

2.1. The Innate, Approximate Number System
Any effort to understand human numerical cognition must begin with the
ANS. Readers who are already familiar with the ANS should feel free to skip
the following section, which provides a brief description of the ANS in
nonhuman animals, human infants, and adults.

The ANS is cognitive system that yields a mental representation of the
approximate number of individuals in a set (e.g. Feigenson, Dehaene, &
Spelke, 2004). Number is represented by a physical magnitude in the brain,
and this magnitude is proportional to the actual number of individuals
perceived. For example, if a person sees sets of 20 and 40 items, the neural
magnitude for the set of 40 will be about twice as large as the neural
magnitude for the set of 20 (e.g. Nieder & Miller, 2003). For this reason,
representations of number in the ANS are often called “analog-magnitude”
representations.

A key signature of the ANS (across development and across species) is
that the discriminability of any two set sizes is a function of the ratio between
them (for review, see Carey, 2009). It is equally as difficult to tell 8 from 16
items as it is to tell 16 from 32 items, or 50 from 100, or 80 from 160,
because all of these cases compare sets with a ratio of 1:2.

Note that the discriminability of set sizes is not determined by their
absolute difference. The comparison 8 versus 16 has a ratio of 1:2 and an
absolute difference of 8. This is of the same difficulty as the comparison 80
versus 160, because the ratio in the latter case is still 1:2, even though the
absolute difference (80) is ten times greater. On the other hand, discrimi-
nating 8 versus 16 is much easier than discriminating 152 versus 160. In this
case, the absolute differences are both 8, but the ratio in the second
comparison is much smaller (approximately 1:1.05).

This property of ratio dependence gives rise to two effects often
mentioned in the literature. The first is the magnitude effect, which says that
if the absolute difference between two set sizes is held constant, lower
numbers are easier to discriminate than higher ones. For example, 5 and 10
are easier to tell apart than 105 and 110. The second is the distance effect,
which says that if you are comparing two numbers to the same target, the
one that is farther away from the target should be easier to discriminate from
it. For example, it is easier to tell the difference between 10 and 15 than
between 10 and 11. Both of these effects reflect the fact that discriminability
in the ANS is a function of ratio.
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2.1.1. Approximate Number Representation in Nonhuman Animals
The mental representation of approximate numbers is widespread among
species. In a landmark study by Platt and Johnson (1971), rats were trained to
press a bar some number of times in order to receive a food reward. After the
rat had pressed the bar the required number of times, a food pellet would
appear in the feeder. The rat had to leave the bar and run over to the feeder
to find out whether the food was there. If the rat stopped pressing too soon,
no reward would be in the feeder. If the rat pressed the bar more than the
required number of times, the reward would be there, but the rat would
have wasted some effort by pushing the bar more times than necessary. In
this way, rats were motivated to press the bar just the number of times
needed to get the food.

Different groups of rats were trained on different numbers. For
example, one group was trained to press the bar 4 times, another group was
trained to press it 8 times, and still other groups of rats were trained on the
numbers 16 and 24. The results were clear. Each group of rats learned to
press the bar as many times as needed. The mean number of presses in each
group was actually one to two presses higher than the number trained,
reflecting the fact that the rats were a little bit conservative. (Better to press
the bar an extra time or two than to risk an empty feeder.)

In Platt and Johnson’s (1971) study, number was correlated with other
variables. Other studies deconfounded those variables and showed that rats
do actually represent the number of presses and not just the total amount of
energy expended in pressing the bar, or the total time spent pressing the
bar. In a creative and early example, Mechner and Guevrekian (1962)
showed that depriving rats of water makes them respond faster and with
greater energy, but does not make them change the number of presses. To
do this, the rat must represent number separately from duration and energy
expenditure (see Meck & Church, 1983, for a related finding).

Note that rats do not perform perfectly. They do not press the bar exactly
the right number of times on every trial. And the distribution of their errors is
an important clue that the system they are using is the same ANS found in
humans and other animals. The errors reveal scalar variabilityda key signa-
ture of the ANS. Formally, scalar variability means that the ratio of the
standard deviation of the subject’s estimates to the mean of those estimates is
a constant. In the case of the ANS, the mean estimate is equal to the target
number (i.e., the number that the subject is trying to guess), so the spread of
errors around each target number is a fixed proportion of the target number
itself (see Fig. 9.1). This proportion differs for different subjects. The smaller it
is, the more accurate the subject’s estimation ability.
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Looking at Fig. 9.1, we can see that errors on ANS estimation tasks follow
a predictable pattern: Themean of guesses for every target number is the same
as the target number itself because errors fall symmetrically above and below
the target. In the case of Platt and Johnson’s (1971), rats, the mean fell slightly
above the target because task incentivized conservative behavior, as
mentioned above. But in studies without such a reward structure, themean of
estimates is typically equal to the target. Also, errors close to the target are
more frequent than errors far away from it. For example, if the target number
is 32, then 31 will be a more common error than 21.

These signaturesdthe symmetrical distributions of estimates, the mean
of estimates for each target being the same as the target itself, and the scalar
variability in the estimatesdare characteristic of the ANS. These same
signatures, have been found in the numerical cognition of a variety of other
species including crows, pigeons, monkeys, apes, and dolphins (Dehaene,
1997; Gallistel, 1990).

Figure 9.1 On top is an idealized set of distributions with scalar variability. The line with
the “1” above it is the distribution of perceptions when a participant is shown 1 item,
the line with a “2” is a response curve to 2 items, and so on. Note that the mean is equal
to the correct number and the standard deviation increases linearly with the mean. On
the bottom are some actual responses taken from adults (Negen & Sarnecka, under
review). Participants were asked to tap a space bar 1, 2, 3, 4, 5, 6, 9, 12, and 15 times.
Again, the lines are labeled with the correct responses. Though the real data are much
noisier, one can still see the mean approximately matches the correct number and the
standard deviation increases with the mean.
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2.1.2. Approximate Number Representation in Human Infants
Given that this very useful cognitive system is widely shared among verte-
brate species, it is not surprising that humans also have it. Researchers from
several different laboratories have shown that preverbal human infants
represent approximate numerical quantities using the ANS system (e.g.,
Brannon, Abbot, & Lutz, 2004; McCrink & Wynn, 2004; Xu & Spelke,
2000).

Rather than making infants press bars for food rewards, these studies rely
on infants’ tendency to get bored, or “habituate” when they see the same
thing over and over again. In these studies, infants are shown different sets of
a particular number, over and over until they get bored. The infants’
boredom is measured by how long they look at the display. For example,
many studies use a criterion of half the initial looking time. This means that if
the infant initially looks at the display for 6 seconds, the researchers keep
showing the same display until the infant only looks at it for 3 seconds (or
less). At that point, the test trials are begun. If the infant looks at the new
(test) display significantly longer than 3 s, the researchers conclude that the
infant noticed some difference between the old, habituation displays and the
new, test display.

In one important study of infant number representation, Xu and
Spelke (2000) habituated one group of 6-month-old infants to displays
containing 8 dots and another group of infants to displays containing
16 dots. Xu and Spelke made sure to test infants’ representation of
number rather than other correlated variables (e.g. the sizes of individual
dots, the total area covered by each display, the total summed perimeter
length of the dots, etc.).

Results showed that infants do represent number. Those who were
habituated to the 8-dot displays recovered interest when they were shown
a 16-dot display; those who were habituated to the 16-dot displays
recovered interest when they were shown an 8-dot display. Later studies
showed that 6-month-old infants also discriminate 16 from 32 dots and
4 from 8 dots (Xu, 2003; Xu, Spelke, & Goddard, 2005; see also Lipton &
Spelke, 2004).

Supporting the idea that infants were using the ANS, infants’ success was
a function of the ratio between the two set sizes. Six-month-old infants
succeed at a 1:2 ratio (4 vs. 8, 8 vs. 16, or 16 vs. 32 dots), but they fail at a ratio of
2:3 (4 vs. 6, 8 vs. 12, or 16 vs. 24 dots). By 9 months of age, infants succeed at
the 2:3 ratios but fail at 3:4 (e.g. they fail to discriminate 6 vs. 8, 12 vs. 16, or 24
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vs. 32 dots). Thus, human infants form analog representations of approximate
numbers long before they learn anything about counting or number words.

2.1.3. Exact-Number Concepts are Connected to the Approximate
Number System
The fact that approximate number representation is innate in humans does
not necessarily mean that it underlies the acquisition of exact-number
concepts. But there is evidence from both adults and children to suggest that
exact-number concepts, once they are acquired, are mapped onto analog
representations in the ANS.

For example, many studies (e.g. Moyer & Landauer, 1967) have shown
adults pairs of written Arabic numerals (e.g. 7 and 9) and asked them to
indicate which was numerically greater. Participants’ responses show both
distance and magnitude effects in terms of reaction times (and sometimes in
terms of error rates, though performance is often at ceiling in terms of
accuracy). In other words, it takes people longer to judge that 8> 7 than
that 7> 6 (magnitude effect). It also takes people longer to judge that 7> 6
than that 8> 6 (distance effect).

Recent studies have tried to specify the kinds of mappings that exist
between ANS representations and exact-number words in adults (Izard &
Dehaene, 2008; Sullivan & Barner, 2010). In one such study, Jessica Sullivan
and David Barner asked adult participants to estimate (by saying a number
word) the number of dots in an array. The arrays were too large for parallel
individuation and were shown too fast for verbal counting, forcing partici-
pants to rely on the ANS. Results suggested that for relatively low number
words (up to 30 or so), adults seemed to have a direct, individual ANS
mapping for each number word. (That is, people have an ANS-based esti-
mate of howmany “twelve” is, howmany “twenty-one” is, and so on, up to
about 30.) This was indicated by the fact that estimates for numbers below
30 were not biased when participants were given misleading information
about the range of set sizes used in the experiment. On the other hand,
estimates for larger numbers were biased by this type of information. For
example, if participants were told to expect arrays of up to 750 dots, when in
fact the most numerous array shown had only 350, participants’ estimates of
numerosity were systematically biased upward, but only for arrays of more
than about 30 dots. This suggests that words for numbers higher than about
30 are mapped to the ANS, but they are mapped in terms of an overall
structure. That is, people know the order of the number words, and they
expect later numbers to be mapped onto larger ANS magnitudes, but they
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don’t maintain a separate representation of the magnitude of each individual
number.

Recent evidence suggests that an ANS-to-number-word mapping
emerges soon after children have learned the first few exact numbers. We
(Negen & Sarnecka, under review) showed 3- and 4-year-old children cards
with pictures of one to four items. The children’s task was to say how many
pictures were on the card. (These children did not yet understand how to
use counting to solve the problem.) Using Bayesian methods of data analysis
(discussed in more detail in Section 5), we found evidence that children’s
answers were drawn from an underlying distribution in which variability was
scalar. In other words, we found evidence for a mapping between ANS
representations and the number words “one” through “four”. Later (about 6
months after acquiring all of the counting principles), children learn to
extend this mapping out to all of the number words they know (Le Corre &
Carey, 2007). By around 5 to 6 years old, children map number words to
ANS magnitudes much as adults do.

Thus, in both adults and children, exact-number concepts are mapped to
magnitude representations in the ANS. For this reason, any plausible theory
of how exact-number concepts are acquired must be somewhat rationalist. It
must at least recognize that exact numbers are mapped to the ANS ideally, it
would offer an account of how and when ANS representations (which are,
by definition, approximate) become connected to representations of exact
numbers.

2.2. Another Innate System Relevant to Exact-Number
Concepts
Infants also create and maintain working-memory models of small sets of
individuals (objects, sounds, or events). Up to three individuals at a time can
be represented this way. For example, when infants are habituated to
displays of two objects, they recover attention when shown one or three
(Antell & Keating, 1983; Bijeljac-Babic, Bertoncini, & Mehler, 1991; Fei-
genson, 2005; Starkey & Cooper, 1980; Wood & Spelke, 2005; Wynn,
1992a, 1996). Unlike the ANS, this is not a system that represents number
per se. It is a system that represents individuals. The system does not include
any symbols for “two” or “three,” but instead maintains a separate symbol
for each individual. Other information about the individual (such as its type
and properties) can also be bound to these symbols. Thus, whereas the ANS
system could represent the content “approximately 10,” the parallel
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individuation system could represent the content, “big duck, little car, little
doll.”

Because it maintains a separate symbol for each individual, only a limited
number of individuals can be represented at any one time. For infants,
constraints on attention and working memory seem to place this limit at
three (e.g. Feigenson, Carey, & Hauser, 2002). That is, up to three indi-
viduals can be tracked at once. If four or more individuals are presented, the
infant is not able to track them. When this constraint is exceeded, perfor-
mance falls to chance in many tasks. For example, Feigenson et al. (2002)
found that children could correctly discriminate that 2< 3 but not 2< 4.
This is especially odd because if they simply failed to represent the fourth
item in the set of 4, the 2< 4 problem would reduce to 2< 3, which they
pass. Presenting more than three items seems to make the system simply
“shut off” and fail to produce any useful output.

Although it does not include any symbols for numbers, this parallel
individuation system is relevant to exact-number concepts for several
reasons. First, exact-number concepts require some notion of individual or
one, and this notion comes from the attention and memory mechanisms that
identify and track individuals. (No representation of exactly one exists in the
ANS, where number is always approximate.)

Second, the parallel individuation system supports judgments of
numerical identity: Is this object or sound or event the same one, or a different
one than the object/sound/event that came before it? Number concepts
require that different individuals can be identified as such because number is
a property of sets, which are comprised of separate individuals. Without
criteria for individuation and some representation of the separateness of
different individuals (i.e. some criteria for determining numerical identity),
no numerical content could be represented at all.

Finally, parallel individuation supports at least some rudimentary
“chunking” of individuals into sets. As described above, infants generally
fail to track sets of more than three items. For example, if an infant sees
one, two, or three toy cars placed inside a box and is allowed to reach
inside the box to retrieve the toys, the infant’s search behavior shows
that the infant remembers whether there are one, two, or three items in
the box. However, if four items (e.g. four cars) are placed in the box, the
infant searches no longer than if only one car had been placed there,
indicating that the infant can represent the information “car, car, car” but
fails to represent “car, car, car, car.” This is the set-size limit of three
individuals, described above.
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However, recent work by Feigenson and Halberda (2008) shows that if
infants are shown two shoes and two cars going into the box, they will
search for all four itemsdsomething about having two different types of
item helps the infants to create two representations of two individuals each,
rather than directly representing all four items. These abilitiesdto identify
and track individuals, and to create higher-order, “chunked” representations
of sets of individualsdare required for the representation of exact, large
numbers.

3. CAREY’S RATIONALIST, CONSTRUCTIVIST ACCOUNT
OF HOW EXACT-NUMBER CONCEPTS ARE ACQUIRED

3.1. Why Any Reasonable Account of these
Phenomena must be Constructivist

Given these innate capacities, the reader might wonder whether it makes
sense to talk about the “construction” of exact-number concepts at all. Is it
likely that exact-number concepts themselves are innate? The answer is no,
it is not likely, for the simple reason that none of the innate capacities are up
to the job of representing exact, large numbers.

The system of exact numbers has enormous representational power.
Using exact numbers, we can represent very large numbers, very precisely.
On the day of this writing, J.S. (the 6-year-old mentioned in the anecdotes
above) was heard complaining that, “The American flag is super hard to
draw,” because it has 50 stars, 13 stripes “and the blue!” He added in an irate
tone that this totaled “64 things to draw!” and went on to express his sincere
admiration for the Japanese flag.

The concepts of exactly 50, exactly 13, and exactly 64 simply cannot be
formulated over ANS representations, which have approximate, real-
number values, rather than exact, natural-number values. In other words,
there is no way to represent “64 things” as distinct from 63.9 things, or 64.5
things, in the ANS. On the other hand, the parallel individuation system has
no explicit representation of number at all. Number is represented only
implicitly because there is a symbol maintained for each individual in the set.
Because more attentional resources are required to represent each additional
individual, the number of individuals that can be represented is strictly
limited to three or four. Thus, parallel individuation cannot, on its own,
support the representation of exact large numbers. This is why a theory of
the construction of exact-number concepts is needed.
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3.2. Conceptual-Role Bootstrapping
Carey has put forward an in-depth proposal for how exact-number concepts
could be constructed, through a uniquely human kind of learning called
conceptual-role bootstrapping (Carey, 2009; see also Block, 1986; Quine,
1960). Conceptual-role bootstrapping is not to be confused with semantic
bootstrapping or syntactic bootstrapping, both of which are ways of solving
mapping problems in the domain of word learning.

Conceptual-role bootstrapping is a way of solving a different problemd
the problem of how to construct a representational system (for a given
domain of knowledge) that is discontinuous with the representational system
that the learner had before. “Discontinuous” means that the content of the
new conceptual system cannot be formulated over the vocabulary of the old
conceptual system. In practice, this may happen for either of two reasons: (1)
The new system is incommensurable with the old one, in the sense that most
or all of the old conceptual framework must be discarded to make way for
the new one, or (2) The new system has massively greater representational
power than the old one. Exact-number concepts fall into this second
category; they are not incommensurable with the antecedent representations
of the ANS and parallel individuation, but they have massively greater (not
just incrementally greater) representational power.

3.3. Bootstrapping Exact-Number Concepts
Episodes of conceptual-role bootstrapping happen as follows. The learner
first acquires a placeholder structureda set of symbols that are structured
(i.e. they have some fixed relation to each other) but are not initially defined
in terms of the learner’s existing vocabulary of concepts. In this case, the set
of placeholder symbols is the list of counting words and the order of the list is
its structure. Importantly, the words are not (and cannot be) initially defined
in terms of the learner’s existing vocabulary of number concepts, which
include only approximate representations of number from the ANS. (Recall
that the parallel individuation system contains no explicit representation of
number at all.) Thus, the first step in bootstrapping exact-number concepts is
to learn the placeholder structuredthe list of number words and the
pointing gestures that are deployed along with it. But these words and
gestures are initially just placeholders, devoid of exact-number content.

Over a period of many months (often more than a year), the child
gradually fills in these placeholder symbols (the counting words and gestures)
with meaning. For example, children must learn that number words are
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about quantity (Sarnecka & Gelman, 2004); that they are specifically about
discontinuous quantity (i.e. discrete individuals such as blocks, rather than
continuous substances such as water, Slusser, Ditta, & Sarnecka, under
review; Slusser & Sarnecka, 2011a); and that numerosity (as opposed to, e.g.
total spatial extent) is the relevant quantitative dimension (Slusser & Sar-
necka, 2011b).

Of course, children must also learn the exact meaning of each
number word, and how they do this is very interesting. Recall that
parallel individuation supports mental models of one to three individuals
and that children can under some circumstances “chunk” individuals
into nested representations. In order to learn the meaning of the word
“one,” the child must create a summary symbol for states of the nervous
system when exactly one individual is being tracked (Le Corre & Carey,
2007).

The role of the ANS in this process is a matter of some debate. On the
one hand, the ANS contains no representation (not even an implicit
representation) of exactly 1. On the other hand, the ANS does contain
summary symbols for numerosities, and 1 is discriminable from 2 in this
system, even if the representations of 1 and 2 are real-number approxima-
tions rather than natural numbers. Furthermore, recent evidence suggests
that even those children who know only a few number words (e.g. “one,”
and “two”) do have ANS representations defined for those number words
(Negen & Sarnecka, under review). All of which suggests that ANS
representations are somehow recruited even in the early stages of exact-
number-concept construction.

Children take a long time to learn the meanings of number words.
Their progression is most clearly illustrated by the changes in their
performance on the Give-N task (Wynn, 1992b). In this task, the child is
given a set of objects (e.g. a bowl of 15 small plastic bananas) and is asked
to give a certain number of them to a puppet. For example, the child
might be asked to “Give five bananas to the lion.” The somewhat
surprising finding is that many young children who count perfectly well
(i.e., they recite the counting list correctly while pointing to one object at
a time) are unable to give the right number of bananas to the lion. Instead
of counting to determine the right set size, they just grab one banana, or
a handful, or they give the lion all the bananas. Even when children are
explicitly told to count the items, they do not use their counting to
create a set of the requested size (Le Corre, Van de Walle, Brannon, &
Carey, 2006).
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Studies using the Give-N task have shown that children move through
a predictable series of performance levels, often called number-knower
levels (e.g. Condry & Spelke, 2008; Le Corre & Carey, 2007; Le Corre et al.,
2006; Lee & Sarnecka 2010, 2011; Negen & Sarnecka, in press; Sarnecka &
Gelman, 2004; Sarnecka & Lee, 2009; Slusser & Sarnecka, 2011a, 2011b;
Wynn, 1990). These number-knower levels are found not only in child
speakers of English but also in Japanese and Russian (Sarnecka et al., 2007).

The number-knower levels are as follows. At the earliest (i.e. the “pre-
number-knower”) level, the child makes no distinctions among the
meanings of different number words. On the Give-N task, pre-number
knowers might always give one object or might always give a handful, but
the number given is unrelated to the number requested. At the next level
(called the “one-knower” level), the child knows that “one” means 1. On
the Give-N task, this child gives exactly 1 object when asked for one and
gives 2 or more objects when asked for any other number. After this comes
the “two-knower” level, when the child knows that “two” means 2. Two
knowers give 1 object when asked for “one” and 2 objects when asked for
“two,” but they do not reliably produce the right answers for any higher
number words. The two-knower level is followed by a “three-knower” and
then a “four-knower” level.

After the “four-knower” level, however, it is no longer possible to learn
the meanings of larger number words (five, six, seven, etc.) in the same way
as the small numbers have been learned. This is because the innate systems of
number representation do not support the mental representation of 5 in the
way that they support the representation of 1 through 4. Specifically, parallel
individuation does not allow for the tracking of five individuals at a time,
and the difference between 5 and 6 is not easily discriminable by young
children via the ANS.

Thus, the meaning of “five” must be learned differently from how the
meanings of “one” through “four” were learned. Carey’s proposal is that
children learn the meanings “five” and all higher numbers when they induce
the cardinal principle of counting (Gelman & Gallistel, 1978; Schaeffer,
Eggleston, & Scott, 1974). The cardinal principle of counting makes the
cardinal meaning of every number word dependent on its ordinal position in
the counting list. (In other words, the cardinal principle guarantees that for
every list of counting symbols, the fifth symbol must mean 5, 13th symbol
must mean 13, the 64th symbol must mean 64, etc.) At this point the
meaning of the ordered list of placeholder symbols (i.e. the counting words)
becomes clear.
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To understand the cardinal principle, is to understand the logic of exact
numbers. This requires an implicit understanding of succession (the idea that
each number is formed by adding one to the number before it) and of
equinumerosity (the idea that every set of numerosity N can be put into
one-to-one correspondence with any other set of numerosity N; Izard, Pica,
Spelke, & Dehaene, 2008). Supporting this idea, recent empirical studies
find that children who understand the cardinal principle of counting (as
measured by the Give-N task) do indeed show an implicit understanding of
succession and equinumerosity as well. Only cardinal-principle knowers
know that adding one item to a set means moving one word forward in the
counting list; whereas adding two items to a set means moving two words
forward in the list (Sarnecka & Carey, 2008). Similarly, only cardinal-
principle knowers show a robust understanding that two sets with perfect 1-
to-1 correspondence must be labeled by the same number word, whereas
two sets without 1-to-1 correspondence must be labeled by different number
words (Sarnecka & Wright, in press).

4. THREE WAYS THAT BAYES CAN HELP WITH
THIS PROJECT

Research exploring the development of exact-number concepts can make
use of Bayesian inference in different ways. Here, we discuss three of them:
Bayesian data analysis, Bayesian task modeling, and Bayesian concept-
creation modeling. What all of these Bayesian approaches have in common
is that they involve some sort of prior information, which is weighted against
some form of evidence to form a posterior distribution. The approaches
differ in the kinds of information captured by the prior, the evidence, and
the posterior.

4.1. Using Bayes to Analyze Data (Agnostic Bayesianism)
The first approach is Bayesian data analysis. Of the three, this is the one
supported by the largest statistical literature (e.g. Gelman, Carlin, Stern, &
Rubin, 1995; 2003). It requires no theoretical commitments about the
developing mind, because Bayesian methods are used only to analyze data.
This is sometimes called Agnostic Bayes (e.g. Jones & Love, 2011) because it
does not require any commitment to the idea that the mind itself makes
inferences in a Bayesian way.
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In Bayesian data analysis, priors are formulated over things that
researchers want to estimate in a data set, such as the rate of correct responses
to a question or the effect size of a given between-group difference. The
evidence is the set of sample observations. The posterior is an updated belief
about the population.

For example, imagine that we have a sample of 24 children, and we ask
each of them the same question about whales: Is a whale a mammal, or
a fish? We will accept only two possible responsesd“mammal” (the correct
answer) or “fish” (the incorrect answer). In this group of children, 22 answer
“mammal” and the other 2 answer “fish”. We want to estimate how many
children in the population of interest will say that whales are mammals. To
do this, we first set a prior, saying that the set of responses can equally be
anything from 0% correct to 100% correct. This distribution is known as
a flat prior or Beta(1,1).

Our data are the 22 “mammal” and 2 “fish” responses that we collected
from the children. These data combine with the prior to form the posterior,
Beta(23,3). This posterior is a probability distribution for the rate of “whales-
are-mammals” responses in the population of interest, given our data and the
prior, and assuming that our sample was randomly drawn from that pop-
ulation. This posterior distribution is shown in Fig. 9.2.

This posterior allows us to interpret the data without calculating
a p-value. The probability density around a 50% correct-response rate in the
population (i.e. the probability that the children in the population have no
knowledge of what whales are, and that they children in our sample

Figure 9.2 The posterior distribution over rates of “whales-are-mammals” responses in
the population, given a flat prior and 22/24 “yes” answers in our data set. Intuitively, it
should make sense that the highest probability is at 22/24 and very little probability
exists below about 70% correct.
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answered randomly) is extremely low (less than 0.001) compared to the
peak. From this, it is already reasonable to infer that the data do not reflect
chance responding. Furthermore, a 95% credible interval stretches from
about 74% to 97% on this posterior distribution, meaning that we can
conclude with 95% certainty that somewhere between 74% and 97% of
children in the population of interest actually will say that whales are
mammals. Further reinforcing this, we can calculate a Bayes factor, which is
an expression of preference for one hypothesis over another. In this case, the
alternative hypothesis (the rate could be anything from 0% to 100%) is
preferred over the null (a correct-response rate of 50%, indicating chance
responding) by a factor of 2431. This is considered extremely strong
evidence. Space precludes a review of all of the ways that posteriors can be
formed and interpreted (for review, see A. Gelman et al., 1995; 2003). But
this basic approachdforming priors, calculating posteriors, looking at
confidence intervals, and calculating Bayes factorsdcan be applied in
virtually any case where researchers would otherwise use t-tests, analyses of
variance (ANOVAs), regressions, and so on.

One clear advantage of this type of data analysis over more traditional
methods is that the Bayesian methods make it possible to find positive
support for the null hypothesis, rather than simply rejecting or failing to
reject it. In classical hypothesis testing (using t-tests, ANOVAs, etc.), a null
hypothesis can be rejected if enough evidence is found against it, but
evidence can never be found for the null.

With a Bayesian approach, it is actually possible to use a prior as the alter-
native hypothesis in a way that allows either hypothesis (the null or the alter-
native) to be preferred after the data are taken into account. This is particularly
well understood in the case of t-tests, forwhich there even exists a simple online
calculator (Rouder, Speckman, Sun,Morey, & Iverson, 2009). There is also an
excel sheet available for approximating this kind of approach for ANOVAs,
though it requires researchers to separately calculate sums of squares used in the
usual F-tests (Masson, 2011; for technical details, seeDickey and Lientz, 1970).

We know of only one number-concept development study using this
type of agnostic Bayesian method (Negen & Sarnecka, under review). The
paper asks whether children who know the meanings of only a few number
words (e.g. “one,” “two,” and “three”) have already mapped those words to
representations in the ANS. Operationally, the question is whether chil-
dren’s responses on a number-word task are drawn from an underlying
distribution with scalar variability. (As mentioned above, scalar variability is
a key signature of the distribution of ANS representations in the brain.)
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Previous studies (e.g. Cordes, Gelman, Gallistel, & Whalen, 2001) have
only been able to test for the absence of this signature. To test whether the
signature could actually be inferred from the data, we calculated a Bayes
factor. The null hypothesis (i.e. that variability was scalar) was preferred by
a factor of about 14. In other words, it was 14 times more likely that the data
came from an underlying distribution with scalar variability than that the
data came from an underlying distribution where variability was (linearly)
non-scalar. This is very strong evidence for the null hypothesis. In general,
this type of analysis is useful in situations where researchers want to present
evidence for the null hypothesisdfor example, to argue that subjects are
guessing at random, that two means are the same, that variables are unrelated,
and so on.

Because Bayesian data analysis tends to result in the calculation of Bayes
factors, it is also useful when several models are being compared frequently.
A current example is the debate over logarithmic and linear performance in
bounded number-line tasks (e.g. Siegler, Thompson, & Opfer, 2009). Most
studies to date have compared linear and logarithmic models by (1) calcu-
lating the median response for each child, (2) finding the best fit for the
linear and logarithmic models, and (3) counting the number of children fit
better by each model.

If one considers only the relatively simple log and linear models, this
method seems adequate. However, it would be more formally rigorous to
use a Bayes factor. This would also allow for the strength-of-preference to
be calculated for each individual child, which may be useful. Finally, a Bayes
factor naturally punishes models that make over-broad predictions, so it
would allow for rigorous comparisons between the simple log and linear
models and also models that have more parameters in them (e.g. Barth,
Slusser, Cohen, & Paladino, 2011; Cohen & Blanc-Goldhammer, 2011;
Slusser, Santiago & Barth, under review).

At the moment, the use of Bayesian data analysis is not widespread
among developmental scientists. We see at least three reasons why this is so.
First, there is very little training available in how to use these methods,
although some progress has been made on this front with a few authors
posting free, online training books (e.g. Wagenmaker & Lee, in
preparation).

Second, because the methods are relatively unfamiliar to reviewers,
authors are required to explain the analysis at much greater length than
would be needed for traditional, frequentist methods; they must explain
both how the analysis was done and why they used Bayesian methods
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instead of frequentist ones. This turns every paper into something of
a statistics tutorialdeven when the authors are not interested in convincing
anyone else to use Bayesian methods but simply want to present their
empirical work. This problem would presumably decrease over time, if the
methods were used more widely.

Third, virtually nothing exists in the way of “friendly” software (GUI-
based, standardized, professionally supported) to help with the analysis in any
but the simplest of cases. (E.g., there is no Bayesian equivalent of SPSS.) This
problem does not even seem to be recognized as a problem; most statistical
software is still being developed and released in R, which is text based and
largely decentralized.

4.2. Using Bayes to Model Subjects’ Behavior on a Task
A second way to adopt a Bayesian approach to studying number-concept
development is to use Bayesian task modeling. This method allows us to
separately model the demands of a task and the knowledge state of the
subject and to think about how those combine to create the observed
behavior.

This method has been used to model children’s behavior on the Give-N
task (Lee & Sarnecka, 2010, 2011). In this task, the child is asked to produce
sets of a certain number (e.g. “Please put three bananas on the lion’s plate.”).
The prior captures the base rate of responses for each task. This is roughly
how children would respond in the absence of any numerical information.
For example, if you could somehow ask for “banana(s)” in a way that did not
provide any singular/plural or other cues about how many bananas were
wanted.

Lee and Sarnecka (2011) inferred their prior from a large set of Give-N
data, by aggregating across all the wrong guesses that children made. The
resulting prior is shown in Fig. 9.3 (left panel). Children have a high
probability of giving just 1 item, a somewhat lower probability of giving 2,
still lower and approximately equal probabilities of giving 3–5, and signif-
icantly lower probabilities of giving any number larger than that. However,
there is a bump up at 15.

This distribution is intuitively sensible. If children understand that they
should give something from the bowl but have no information about how
many things they should give, it seems reasonable that they should give one
item or a handful of items (each object is about 2 cm in diameter, so children
can typically grab two to five objects at once). Nor does it seem surprising (to
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anyone who has spent time with preschoolers) that it is relatively common
for children to give the entire set of 15 items, either by dumping them all
onto the lion’s plate at once or by placing one item at a time on the plate
until there are none left.

If the child knows the exact meanings of any exact number words (e.g.
one, two, and three), this information changes the base rate for that child. A
three-knower will usually give the correct number of items when asked for
“one,” “two,” or “three” and will very rarely produce those set sizes when
asked for any other number. The intuitive operation of themodel is illustrated
in Fig. 9.4. The child depicted is a three-knower, reflected by the fact that the
numbers 1, 2 and 3 are underlined in the first thought bubble, representing
the prior. The prior probability of any given set size being produced (as shown
in Fig. 9.3) is represented here by the size of each numeral, with numerals for
higher-probability set sizes appearing in larger type.

If the child hears the request, “Give me two,” the posterior probability
(illustrated in the thought bubble on the upper right) is very high for 2 and
very low (too small to be pictured) for any other number. In other words,
this simplified model predicts that children who are three-knowers will
always give 2 objects when asked for two.

If the request is, “Give me five,” then the probabilities for 1, 2, and 3
immediately drop to very near zero. (In the figure, these numerals do not
appear in the lower-right thought bubble.) This reflects the fact that the
child is a three-knower, and three-knowers know that whatever “five”
means, it cannot mean 1, 2, or 3 (Wynn, 1992b). What remains are all the
other numbers of objects the child could give, each of which has the same
probability (relative to all the alternatives) as it did in the prior. Chances are
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Figure 9.3 Inferred base rates (i.e. priors) for the Give-N task and What’s-On-This-Card
tasks from Lee & Sarnecka, 2011
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that the child will produce a set of 4, 5, or 15 in response to this request.
Other set sizes are less likely to be produced, as reflected by their smaller
numerals.

The key point here is that the base rate has a large impact on the observed
performance. It answers the question, for example, why might a child give
four items instead of six for a given request, if that child does not know what
either “four” or “six” mean? The answer is, because the prior (base-rate)
probability of giving four items is higher.

Note that this kind of modeling does not commit the user to the idea that
children make any of the calculations involved, either explicitly or implic-
itly. Formally, this is a computational model (a model of how cognitive
parameters and task demands lead to observed behavior) rather than an
algorithmic model (a model of exactly how the various cognitive processes

Figure 9.4 Intuitive operation of Lee and Sarnecka’s (2011) model, showing a child who
is a three-knower responding to instructions to “give two” or to “give five” (Lee &
Sarnecka, 2011). For color version of this figure, the reader is referred to the online
version of this book.
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are implemented). A Bayesian operation takes a base rate of responding (the
prior) and updates it using the child’s knowledge (the data) to produce an
actual, observed rate of responding (the posterior). This does not imply that
the child represents any of these concepts. It is simply a description of how
task demands and different states of knowledge combine to form different
patterns of behavior in the task.

One way that Bayesian task modeling can be very useful is in allowing
researchers to investigate the “psychological reality” of theoretical constructs
across tasks. Using this type of modeling, we can assess children on multiple
tasks that are believed to tap the same underlying knowledge and then
compare performance across tasks, even if the task demands and resulting
performance data are very different.

To continue with the earlier example, Lee and Sarnecka (2011) tested
children on two tasks, both of which are supposed to reveal the child’s
number-knower level. One was the Give-N task mentioned above; the
other was the What’s-On-This-Card task (Gelman, 1993; Le Corre &
Carey, 2007; Le Corre et al., 2006). The Give-N task asks children to
produce the set corresponding to a given a number word; the What’s-On-
This-Card task asks children to produce the number word for a given set.

The priors for each task were different because the kinds of behavior
possible on each task were different. For example, the What’s-On-This-
Card prior (Figure 9.3, right panel) did not have a bump up at 15 because the
bump up at 15 was an artifact of the Give-N task. It reflected the fact that
there were 15 items in the bowl set before the child and that children often
dumped out and handed over all the items. On the other hand, any number
word a child could think of was a possible response on theWhat’s-On-This-
Card task, whereas on the Give-N task, the only possible responses were the
numbers 1–15.

Number-knower levels are most often assessed using the Give-N task.
But if they are a psychologically “real” phenomenon (rather than an artifact
of Give-N task demands), then the number-word knowledge inferred for
children on the Give-N and What’s-On-This-Card tasks should be the
same, despite the different task demands. And indeed, this is what Lee and
Sarnecka found for most children. Furthermore, by combining information
from the two different tasks, Lee and Sarnecka’s (2011) model was able to
diagnose the knower levels of many children with a much higher degree of
certainty than was possible using the data from either task alone.

In practice, it is often the case that researchers who use Bayesian task
modeling will also want to use Bayesian data analysis. Some authors have
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argued that this is necessary to realize the full potential of the approach (e.g.
Kruschke, 2010; Lee, 2010, 2011a, 2011b). Estimating the parameters of
a model like the one described above is actually a very hard problem. A
widely accepted alternative is to sample from the posterior (rather than
attempting to fully describe it) and then examine the samples. This process,
known as Markov-Chain Monte-Carlo, is well studied and is implemented
in several free software packages (e.g. WinBUGS; Thomas, 1994).

4.3. Using Bayes to Model Learning Itself
The third way to adopt a Bayesian approach in this research is to use Bayesian
concept-creation modeling, where Bayesian methods are used to model the
creation of a new concept. Here, the prior is some set of beliefs in a model
learner’s virtual minddsome set of bets or preferences about what is
probably true in the world. If the model is to be cognitively plausible, these
prior beliefs should be ones that could plausibly be attributed to human
learners at the outset of the learning episode. In the case of exact-number
concept creation, for example, priors should reflect the known limits of the
ANS and/or parallel individuation system.

The evidence is the input received by the learner. Here, the requirement
for a cognitively plausible model is that the input must match real-world
experiences that children actually have. For example, researchers trying to
model word learning might base the input on transcripts of natural, child-
directed speech.

The posterior is a distribution over various inferences a child could make.
The explanatory value of the model depends on this posterior distribution
giving most of its mass to inferences that children actually do make. In other
words, at the end of the learning episode, the model learner must represent
the knowledge in question. For example, a model learner acquiring English
count/mass syntax should agree that number words cannot quantify over
mass nouns (e.g. *the three furniture). That is, any rule that accepts *the three
furniture should have low posterior probability.

This approach is particularly helpful for addressing arguments over
learnability. Philosophers have famously argued that any set of data can be fit
equally well by an infinite space of hypotheses. For instance, the English
language could be a subject-verb-object language up until January 1, 2025,
and then suddenly switch to being a verb-subject-object language. All the
data available at the time of this writing are equally consistent with this
2025-change hypothesis and the alternative, no-change hypothesis. The
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intuition that this 2025-change hypothesis is silly, counterproductive,
needlessly complex, and/or confusing is met with the counterargument that
(1) these objections just reflect a bias toward what we already somehow
know and (2) there is no formal way to measure complexity.

Rips, Asmuth, and Bloomfield (2006, 2008) have put forward such an
argument about the development of exact-number concepts. Specifically,
researchers are challenged to explain how young children (who know only
some exact numbers) could infer that numbers keep going in a linear
progression, rather than following a modular principle, such that at some
arbitrary number (e.g. 10), the numbers stop counting up and start over
again at 1. (Rips and colleagues point out that some notational systems, such
as days of the week, months of the year, and hours of the day, do have
a modular structuredso modular systems must in principle be learnable by
children.) In other words, the numbers the child knows are like all the years
in which English has been a subject-verb-object language. No matter how
many there have been, the next one could be different.

Recent work by Piantadosi, Tenenbaum, and Goodman (in press) has
shown that a Bayesian model learner can overcome this hurdle and construct
exact-number concepts with a linear progression, even when the evidence is
theoretically consistent with either a modular or a linear system. The model
works by describing various systems for matching number words with
meanings as lambda calculi. An example of a one-knower might be

l S : ðif ðsingleton? SÞ “one” “two”Þ;
which outputs “one” if given a set S with 1 item and otherwise outputs
“two”. The prior favors calculi that (a) are short, (b) use fewer elements of
recursion, and (c) re-use primitives. In many ways, this formally captures the
intuition of certain systems being “simpler”.

Piantadosi and colleagues address the question of how children could
infer a linear number system, given the available evidence, rather than
a modular number system. The answer is that the model’s prior prefers
systems that can be described in a shorter calculus, with fewer primitives.
(Note that this is a formal definition of “simpler,” undermining the claim
that there is no way to measure complexity.)

By this definition, linear systems are less complex than modular
systems, which require all the machinery of a linear system in order to get
from 1 to 10 (or whatever the highest number of the module is), and then
additional machinery to tell the user to stop and start again from 1. When
fed true-to-life number-word input, Piantadosi’s model learner selects the
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correct (linear) hypothesis because it has the greatest posterior likelihood
given the data and the prior, even against the infinite space of other
hypotheses.

It is not that Piantadosi’s model learner cannot learn a modular systemdit
is just that positive evidence for a modular system must be provided in order
to overcome the simpler, linear hypothesis. When the learner is fed modular
information (real-world number-word input that has been altered to reflect
a modular system), a modular system is indeed what it learns. This is intu-
itively appealing when one considers the learning trajectories of real chil-
dren: Children represent at least some exact numbers by about age 4; at that
age, most of them have not yet learned the cycles of hours in a day, days in
a week, or months in a year. However, they are not fundamentally incapable
of learning the cyclical systems and neither is the model learner. It just takes
the model longer to learn modular systems (“longer” meaning that it
requires more data), which mimics the learning trajectories of real children.

One objection to Piantadosi’s model might be that it simply does not
consider a very rich space of hypotheses. But the same general method can
be used to address a space of hypotheses of any size. For example, the model
does not consider that the meaning of number words might change at some
specified future date, because the model learner does not have access to date
information. However, even if the model were modified to include this
information, the date-change hypothesis would be doomed from the outset
because it would require an expression such as “if the date is before X” and
then two full models of number-word meanings (one for all dates before the
change and another one for all later dates). Such a model would be much less
likely under the prior (which prefers shorter descriptions with fewer
primitives) and thus would not be selected. This argument holds equally true
for any other alternative that would encumber the correct system with
conditional variance, for which there is no negative evidence.

In very general terms, Bayesian concept-creation modeling provides
a way of separately modeling prior biases and observations and for both of
these to be interesting, well-specified, research-supported, necessary
components of the concept-creation process. This is exciting because
a similar approach has been useful in explaining human induction in other
areas (e.g. Perfors, Tenenbaum, Griffiths, & Xu, 2011). Indeed, the
approach seems so flexible across domains that in some cases, domain-
general priors may eventually replace domain-specific constraints.

Thus, Bayesian concept-creation modeling represents a convenient way
of formally describing what we know to be true about development: That
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the rationalists and the constructivists have always both been right (at least in
part) because both priors and evidence matter. Even if a human infant and
a puppy are raised by the same, loving human family, the baby will grow
up to speak a human language and the dog will not, because of prior
constraints. On the other hand, if a Japanese baby and a French baby are
switched at birth, it is the baby raised in Japan who will learn to speak
Japanese, and the one raised in France who will learn to speak French,
because of the evidence in the environment. By creating models that take
both these aspects of development seriously, Bayesian concept-creation
modeling allow us to move beyond tiresome debates where each side
emphasizes either prior constraints or learning, but no theory seems able to
accommodate both.

Finally, it is worth mentioning that for all three types of Bayesian
approaches discussed here, it would be possible to take a similarly proba-
bilistic approach that retains much of the power of these models without
using Bayes’ rule. For instance, the model by Piantadosi and colleagues (in
press) could rank hypotheses by some criterion other than posterior prob-
ability. One could design a scoring system wherein hypotheses earned points
for good fit and desirable calculi, and the hypothesis earning the most points
would be the winner. Such a model would likely lead to very similar
conclusions but would not technically be Bayesian. The appeal of Bayesian
formalisms is that they are already very well studied and well described and
are therefore most convenient for researchers to use.

5. SUMMARY

The study of early number concepts is a thriving field that provides
many insights into the developing mind. As the search for the origins of
numerical thought continues, the future researcher has many options.
A complete theory must be somewhat rationalist, because children are
genetically endowed with at least some abstract numerical concepts. A
complete theory must also be somewhat constructivist, because children
clearly move beyond the innate building blocks of number, eventually
acquiring much more complicated mathematical constructs such as inte-
gers, rational numbers, and so on. Bayesian approaches hold great promise
in this area, whether as a way of analyzing data, of modeling subjects’
performance on individual tasks or of modeling the creation of number
concepts themselves.
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Abstract

The idea of the child as an active learner is one of Piaget's enduring legacies. In this
chapter, I discuss the ways in which contemporary computational models of learning
do, and do not, address learning as an active, child-driven process. In Part 1, I discuss
the problem of search and exploration. In Part 2, I discuss the (harder and more
interesting) problem of hypothesis generation. I conclude by proposing some possible
new directions for research.

Constructivism is a clunky word. Arguably, however, only such a ponderous
term could stand up to those venerable pillars of epistemology: nativism and
empiricism. In contrast to both, Piaget insisted that learning was driven by
interactions between the child’s representations and her experience of the
environment. Today, we can express this insight with mathematical preci-
sion; prior hypotheses constrain our interpretation of evidence and affect
whether and how we revise our beliefs from evidence (see Tenenbaum,
Kemp, Griffiths, & Goodman, 2011, for exposition and review). In adding
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clarity and rigor to concepts like accommodation and assimilation,
computational models introduced rational analyses to constructivism and
motivated much of the enterprise to which this volume pays homage. A
decade of empirical support speaks to the success of this approach (Gopnik &
Wellman, 2012; Schulz, 2012). In this chapter, however, and mindful of the
mandate to reflect critically on “needed theoretical, technological, and
empirical advances,” I will focus on an idea that is critical to the construc-
tivist vision but largely missing from contemporary accounts of learning: the
idea of the child as an active learner.

Consider this passage, written in 1937:

Such construction is not the act of an a priori deduction, nor is it due to purely
empirical gropings. The sequence . testifies much more strongly to progressive
comprehension than to haphazard achievements. If there is experimentation, the
experiments are directed.

Piaget, The Construction of Reality in the Child.

The excerpt refers to the development of the infants’ object concept.
Never mind the details (which are wrong; Baillargeon & Luo, 2002; Spelke,
1999; Spelke, Brinlinger, Macomber, & Jacobson, 1992). For my purposes,
Piaget’s central claim is not a less rigorous, less precise instantiation of the
Bayesian idea that prior knowledge and evidence interact. The central claim
is that the child actively seeks to understand the world.

What might active learning mean? It could mean what we sometimes
mean by “hands-on learning”: that children like to do things and that the
things they do can sometimes generate evidence that supports new infer-
ences. Such activities, however, presumably fall under the purview of
“empirical gropings.” Piaget’s claim is stronger. He suggests that the child
generates hypotheses about how the world works and that the child’s
actionsdstarting with literal manipulations of objects but ending in
“cognitive acts” ranging from mental rotation to thought experimentsdare
systematic attempts to understand how the world works.

As someone who putatively works on exploration and active learning in
early childhood, I find it hard to overstate the degree to which this vision of
active learning is absent from current research on cognitive development
(my own included). Even my writing betrays this; I find myself repeatedly
opting for periphrastic locutions (“make inferences”; “distinguish
hypotheses”) over verbs that more clearly ascribe intentional activity to the
child: “thought,” “decided,” “wondered,” and “tried.” To the degree that
grammar is “the metaphysics of the people” (Nietzsche, 1882, 1974), I
would seem to be an agnostic about active learning.
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This grammatical timidity is due in part to the problematic nature of
making claims about children’s internal states. However, I think the phrasing
also accurately reflects the current state of our theories of learning. It is one
thing to talk about how learners draw rational inferences from data; it is
another to suggest that children actively work to construct new knowledge.
The latter commitment poses at least two problems that current accounts of
cognitive development elide.

First, accounts of cognitive development have focused primarily on prob-
lems of inductive inference. Principles of inductionhave implications for but do
not directly address problems equally critical to learning: problems of search,
exploration, or decision making. Thus, our current accounts of constructivism
tend to stop precisely where the active part of active learning begins.

The second and to my mind more fascinating problem (impatient readers
should skip directly to Problem Two) is that, we routinely generate new
ideas without having access to new data. With all due respect to the
innovative proposals currently in play, we still do not understand how
learners think of new ideas. The hard part of this problem goes beyond
a search problem. I think a precise formal solution to this problem is a ways
off but I will talk about what I think is missing from the current proposals
and suggest possible new directions for research.

1. PROBLEM 1: EXPLORING

Why do we explore? Intuitively, we explore either when we
encounter something surprising or when we encounter something (even
a perfectly ordinary something) that we cannot explain. Bayes’ law can
illustrate the common principle underlying these two seemingly quite
different motivational states.

Bayes’ law states that the learner’s belief in a hypothesis after observing
evidence, the posterior probability of the hypothesis, P(hje), is proportional to
both to its likelihood, P(ejh), the probability that the hypothesis, if true,
would have generated the observed evidence, and its prior probability, P(h),
the probability that the hypothesis is generated by the learner’s background
theories. Formally: P(hje) f P(ejh)P(h).

If the posterior probability (the probability of the hypothesis given the
evidence) of two or more hypotheses is approximately equivalent (P(h1je)z
P(h2je)), the learner will be uncertain which hypothesis is true. This can occur
either if the prior probability favors one hypothesis and the likelihood another

Finding New Facts; Thinking New Thoughts 271



(P(ejh1) < P(ejh2) and P(h1) > P(h2)) or if the prior probability and the
likelihood of multiple hypothesis are equivalent (e.g. P(h1) z P(h2) and
P(ejh1)zP(ejh2)). Thefirst is a formalization ofwhat itmeans for evidence to
be surprising; the second is a formalization of what it means for evidence to be
confounded. Thus Bayes’ law provides an intuitive account of why explora-
tion in the face of surprise and confounding derive from a common principle.

So far, so good, and numerous empirical studies attest to the fact that
children selectively explore when confronted either with theory-violating
evidence (Bonawitz, van Schijndel, Friel, & Schulz, 2012) or with evidence
that is confounded (Schulz & Bonawitz, 2007). Patently, however, both
children and adults can experience inductive uncertainty without engaging
in exploration. Understanding when and why children do or do not engage
in exploration will require understanding both how children decide when
exploration is valuable and how children know what exploratory actions to
take. These processes are not independent (e.g. the learner’s assessment of
the value of exploration depends on her assessment of the availability of
potentially informative actions). However, progress has been made on each
of these fronts across quite different disciplines, suggesting the possibility that
an integrated approach to understanding exploration could predict and
explain more of children’s behavior.

1.1. Knowing When to Explore
When children explore, there are other things they are not doing. Children
have to decidewhen the potential advantages of exploration exceed the costs.
A number of fields, including machine learning (Gittens, 1979; Kaebling,
1993; Kaelbling, Littman, &Moore, 1996; Kaelbling, Littman, & Cassandra,
1998; Tong & Koller, 2001), decision making (Sutton & Barto, 1998),
neuroscience (Daw, Niv, & Dayan, 2005; Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006; McClure, Daw, & Read Montague, 2003), and
ethology (Charnov, 1976, 2006; Krebs, Kacelnik, & Taylor, 1978; Stephens
& Krebs, 1996), have proposed resolutions to such exploration/exploitation
dilemmas. These accounts suggest search strategies that consider various
reward functions and constraints on the organism andmaximize the expected
cost to benefit ratio of staying in a given state relative to transitioning to a new
one (predicting, for instance, that organisms should stay longer at a food patch
as the distance between patches increases; Charnov, 1976).

If applied to problems of learning in early childhood, comparable
approaches might help predict and explain children’s exploratory behavior
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beyond what can be explained by epistemic uncertainty alone. It seems
intuitive, for instance, that children will be more likely to explore in
contexts where there are just a few plausible hypotheses than when there are
many. However, formalizing even such simple intuitions requires inte-
grating problems of inductive inference with a consideration of the relative
value of exploratory actions (e.g. if the same action can eliminate a single
hypothesis from consideration across cases, the potential for information gain
is greater when hypotheses are fewer).

Typically, however, solutions to exploration/exploitation dilemmas
have been proposed, not for challenging learning problems but for cases
where the epistemic component is relatively straightforward. In particular,
optimal search processes have been developed to maximize rewards when
the distribution of rewards is uncertain but arbitrary (e.g. rewards distributed
among slot machines with different payoffs (Daw et al., 2006; Gittins, 1989;
Strehl et al., 2006), decks of cards with different values (Bechara, Damasio,
Tranel, & Damasio, 1997; Sang, Todd, & Goldstone, 2011), or food patches
with different caloric and nutritional worth (Kacelnik & Bateson, 1996;
Stephens & Krebs, 1986).1 Although the organism’s search may be affected
by rational considerations of expected costs and benefits, such search
processes nonetheless arguably remain closer to “empirical groping” than to
constructivism. The search process is not random but neither is it guided by
an abstract theory of the domain. Arbitrary distributions of rewards are
unlikely to lend themselves to “progressive comprehension.”

Recently, however, researchers in machine learning have begun to
consider how search might proceed in domains that support more structured
representations. Robots, for instance, may start with a map of the terrain and
search for efficient routes to a goal within the terrain (Leonard & Durrant-
Whyte, 1991). Researchers have also begun to address chicken-and-egg
problems of exploration: designing robots that can simultaneously use a map
to evaluate the expected utility of various state transitions and use the
information gained during exploration to revise the map (Durrant-Whyte &
Bailey, 2006; Thrun, Burgard, & Fox, 2005). Although these particular
approaches only solve these problems for finite two-dimensional spaces,
they offer a hint as to how we might begin to formalize the idea of theory-
guided and theory-shaping exploration in higher dimensional spaces.

1 Of course, the actual distribution of calories across patches is not arbitrary; in the case of
food patches, it is more accurate to say that the foraging animal is presumably ignorant of
the biological and ecological factors that affect the distribution of rewards.
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Such approaches would seem to lend themselves well to an under-
standing of the exploratory aspect of constructivism. If we can consider the
relative utility of competing courses of action in the context of hierarchical
representations of the domain being explored, we might be able to better
explain both when exploration is likely to occur and how the child’s
exploration is likely to transform the child’s knowledge. A full analysis of the
relative costs and benefits of different actions may be intractable, such an
account would have to consider not only the value of non-exploratory
behaviorsdplaying, eating, daydreamingdto the child but also the effect of
the child’s culture, temperament, upbringing, and individual interests on
how she perceives the value of the information she might gain through
exploration. Nonetheless, advancing our understanding of how children
assess the relative value of information gain seems critical, given that
competing utilities can have determinative effects on learning.

1.2. Knowing How to Explore
Understanding the expected utility of exploratory actions helps answer the
question of when the child should engage in exploration. However, the child
must know not only that there is information to be gained but also how
precisely to gain it. Even the simplest forms of exploratory behavior raise
questions about how humans (Adolph, Eppler, & Gibson, 1993; Berger,
Adolph, & Lobo, 2005; Brown, 1990; Gibson, 1977; Lockman, 2000;
Norman, 1988, 1999) and other animals (Brauer, Kaminski, Reidel, Call, &
Tomasello, 2006; Emery & Clayton, 2004; Hood, Carey, & Prasada, 2000;
Mendes, Hanus, &Call, 2007; Stulp, Emery, Verhulst, &Clayton, 2009) learn
to recognize the possible actions that the environment affords. Nonetheless, in
cases where there is a direct mapping between an action and information gain,
the question of how to explore has a relatively straightforward answer: act on
the entity with greatest uncertainty (e.g. by pulling a lever, putting a block on
a machine, or lifting a card to learn its value; see Oaksford & Chater, 1994).

Sometimes, however, no single action available to the learner will
support information gain. The learner may have to plan a complex series of
actions in order to isolate variables or may have to resign herself to the fact
that isolating the relevant variables is impractical or impossible. Effectively
generating informative evidence requires combining an understanding of
the probability of information gain together with an understanding of the
affordances that might permit it.

In principle, children might both learn from informative evidence (see
Gopnik & Wellman, 2012; Schulz, 2012, for review) and engage in
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exploration when they observe uninformative evidence (Schulz & Bona-
witz, 2007) without understanding either what it is about evidence that
makes it informative or how to generate such evidence. However, we now
know that at least in very simple contexts, children have both of these
abilities. Preschoolers, for instance, not only selectively explore when they
are uncertain which of two connected beads activate a toy, they also separate
the beads and test each one individually. Moreover, if the beads cannot be
detached, children orient the connected bead so that only a single bead
makes contact with the toy at a time (Cook, Goodman, & Schulz, 2011).
Thus, preschoolers seem to understand not only when there is potential for
information gain but also the probability that particular actions will generate
data relevant to a particular hypothesis (see also Sodian, Zaitchik, & Carey,
1991).

Needless to say, the real world rarely makes it so easy. Part of what
distinguishes science from cognition more broadly is the cultural accumu-
lation of tools and knowledge that can support information gain in ways that
go well beyond naive exploration. However, at least in simple contexts,
researchers have made progress in analyzing and formalizing the cognitive
processes involved in optimizing information gain (Cook et al., 2011;
Klayman, 1988; Klayman & Ha, 1987; Oaksford & Chater, 1994; Sobel &
Kushnir, 2006; Steyvers, Tenenbaum, Wagonmakers, & Blum, 2003). To
the degree that we can show how these abilities manifest in infants and
young children, we may come closer to understanding of what it means for
children to actively construct knowledge.

2. PROBLEM 2: THINKING

Thus far I have focused on how children might construct new
knowledge by gathering more data. Arguably, however, the distinguishing
attribute of human cognition is that we can arrive at new ideasdsome of
which turn out to be truedmerely by thinking of them. How is this possible?

As noted, hierarchical Bayesian inference models provide an elegant
account of how learners integrate theories on different levels of abstraction
with the interpretation of new evidence. They thus provide a way of
thinking about some key points of comparison between scientific inference
and cognition in early childhood (see Gopnik, in press; Gopnik, &Wellman,
2012; Schulz, 2012). In light of the ways that probabilistic inference models
have revolutionized cognitive science (Tenenbaum et al., 2011), it might
seem churlish to suggest that they do not really address the core issue at the
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heart of constructivism. However, these models explain how learners select
among competing hypotheses; for the most part, they do not attempt to
explain how learners construct hypotheses in the first place. They tell us how
we might choose the best idea from the ideas we have but they do not tell us
how we might think of something new.

Note that the problem of how we think of new ideas is not reducible to
the (also interesting) problem of how to make Bayesian inference algo-
rithmically tractable (Bonawitz chapter, this volume; Bonawitz & Griffiths,
2010; Sanborn, Griffiths, & Navarro, 2010; Shi, Feldman, & Griffiths,
2008).2 As Bonawitz et al. note, in simple cases, all the relevant hypotheses
may be available to the learner in principle if not at any given moment.
Given, for instance, three colors of chips that activate a machine, the learner
might believe the machine is activated only by red chips but can also
entertain the possibility that it is activated only by blue chips, only by green
chips, only by red and blue chips, etc. Monte Carlo (randomized, sampling-
based) algorithms provide an efficient way to search among the hypotheses.
The idea of inference by rationally randomized sampling (i.e. sampling from
hypotheses with the highest posterior probability) also reconciles the
empirical evidence of variability in children’s learning with ideal Bayesian
analysis; the learner can entertain only a single hypothesis at a time and
nonetheless converge on the correct hypothesis. However, efficiently
sampling hypotheses is not the same as constructing them.

3. THEORY-GUIDED STOCHASTIC SEARCH

A closer approximation to constructivist learning comes from a family
of computational models, which suggest that learners have a “grammar” for
generating potentially infinitely many hypotheses (Goodman, Ullman, &

2 The problem of how we think of new ideas is also distinct from the so-called “old
evidence” problem (Glymour, 1980). The supposed problem is that you can’t learn
anything from old evidence because once evidence is known, it has a prior probability of
1(p(e) ¼ 1), therefore also a likelihood of 1(p(ejh) ¼ 1) and a posterior probability of
1(p(hje) ¼ 1). This would contradict our intuition that, for instance, well-known
anomalies in Mercury’s orbit provided evidential support for Einstein’s theory of rela-
tivity. There are many responses to this (Eels, 1982; Garber, 1983; Howson, 1985), most
of which dispute the grounds for assuming that p(e) and p(ejh) ¼ 1. However, the point
here is simply that the old evidence problem is different from the problem of how we
generate new hypotheses in the first place. Thanks to the editors for suggesting that I draw
this distinction.
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Tenenbaum, 2011; Tenenbaum, Griffiths, & Niyogi, 2007; Ullman,
Goodman, & Tenenbaum, 2012). If the learner’s initial theory fails to
account for the data in some respect, she can engage in a sampling-based
stochastic search process, proposing randomized changes to the hypothesis,
constrained by the prior probability that the grammar will generate the new
hypothesis. Efficient learning is further enabled by “templates”: grammat-
ical predicates that encode common logical, causal, or constitutive relations
(e.g. transitive relationships among variables). Rather than only con-
structing new hypotheses piecemeal, the learner can sample from the space
of existing templates. The stochastic search through the “outer loop” of the
hypothesis space is then grounded out by a search through an “inner loop,”
testing how well the new candidate hypothesis applies to the learner’s
observations. If the new hypothesis predicts the data better than the
previous hypothesis, the new hypothesis is likely to be accepted. In simu-
lated experiments, this approach shows dynamic features commensurate
with what we know about children’s learning: individual learning curves
are variable but learning on average is predictable, often following char-
acteristic sequences of transitions and typically proceeding from simpler to
more complex hypotheses.

This approach represents an exciting and welcome development. Rather
than simply describing data-driven learning, the account of theory acqui-
sition as stochastic search explains how structured representations can change
in the absence of new evidence. In this, it seems to capture some of what we
mean by “thinking.” And may be search by means of random variation and
selection is enough. Certainly, evolution testifies to the power of random
variation, together with the re-use of components that have functioned well
in the past. Perhaps, thought does not require any more intelligence in its
design than life itself.

Perhaps. However, with only the minimal constraints of simplicity,
grammaticality, and previously productive templates, changes to hypotheses
generated by random variation seems at best inefficient. More importantly,
our minds seem to have access to rich sources of information that could
better constrain the process of hypothesis generation and that current
approaches do not exploit. I will discuss these additional possible constraints
on hypothesis generation in the hopes that they might inspire new directions
for both computational and empirical research. As will be obvious, all the
ideas to follow are shamelessly speculative. I am taking advantage of the
genre of “chapter” rather than “journal paper” to advance ideas that are just
at their inception. However, begging the reader’s indulgence for the paucity
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of detail, I hope this attempt to think new thoughts about thinking new
thoughts might at least spark conversation.

4. ABSTRACT ERROR MAPS AS CONSTRAINTS
ON HYPOTHESIS GENERATION

The first kind of knowledge that could help guide a learner’s search for new
ideas is an abstract representation of the flaws in her current theory, what we
might call an “error map.” Here, I mean not a record of individual
prediction errors but a more abstract inference drawn from them: a repre-
sentation of the kind of errors being made and the relationship among those
errors. That is, much as the learner can draw inferences from individual
events to abstract categories and relationships, the learner might draw
inductive inferences from specific prediction errors to general kinds of errors
and the relations among them.

I will spell this idea out in the examples to follow. First, however, I want
to stress that my use of the phrase “error map” is provisional. As I discuss
below, the gaps that matter can occur not just between hypotheses and data
but also between hypotheses and explanatory desiderata or between
hypotheses and functional goals. Thus, the notion of error here refers to
something less like a prediction error and more like the learner’s subjective
error signal and her abstract representation of why her current hypothesis is
unsatisfactory. It might be better to think of these as “gap maps,” “goodness-
of-fit maps,” or simply “maps of our discontents.” Nonetheless, in many
cases, these gaps present as prediction errors (including both events that the
learner predicted wrongly and those she failed to predict at all), so for the
time being I will stick with the notion of error maps.

In almost any conventional approach to learning (whether con-
nectionist or Bayesian; McClelland, 1988; Munakata & McClelland, 2003;
Ullman et al., 2012), prediction errors inform hypothesis selection. All else
being equal, learners will retain new hypotheses that improve the fit to the
data and reject those that do not. However, even in theory-guided
stochastic search (Ullman et al., 2012), prediction errors are put to use
only at the stage of hypothesis selection, after a new hypothesis has been
generated. Suppose instead that learners could use a representation of the
gaps between their current hypotheses and the evidence to constrain the
process by which they generate new ideas in the first place. If so, many
simple, grammatical changes to the current hypothesis that would be
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randomly generated only to be rejected will not even be attempted; the
constraints imposed by such an abstract error map might mean that
learners could recognize a priori that most of the new ideas she could
generate are unlikely to solve her problem.

5. AN EXAMPLE: MAKING SENSE OF NOISE

Imagine, for instance, a child who knows many things about airplanes
and many things about phones. However, nothing in her intuitive theory of
airplanes or phones predicts that passengers will be asked to turn off their
phones on take-off. She does not have the concept of radio interference and
(like many of us, albeit for rather different reasons) she wants to understand
why you have to turn off your phone on the airplane. Now imagine that the
child’s only option is to randomly add or delete simple, logical predicates
that have a high probability given her prior beliefs about airplanes and
phones. She could connect the two artifacts with infinitely many simple
constitutive, causal, or other relational claims consistent with her prior
beliefs and expressible in the grammar of her theories: perhaps airplanes, like
phones, have push buttons; perhaps airplanes and phones are both manu-
factured in Ohio; perhaps airplanes fly over the earth, and the earth has
phones, so airplanes sometimes fly over phones. On any account, these
hypotheses, once generated, will be swiftly rejected because none predicts
that you should shut off your phone when flying. But the odds of
converging on a valuable new idea through this kind of process seem, prima
facie, low.

Suppose instead that the child can constrain the space in which she
generates hypotheses by availing herself of an abstract representation of the
problem: the unanticipated but evident incompatibility between planes and
phones. She need not bother hypothesizing that planes and phones have
infinitely many commensurable features. She can randomly generate only
hypotheses in which some feature of planes is in conflict with some feature
of phones. In this way, she might selectively generate hypotheses that are
recognizably “good” hypotheses (in that, if true, they would solve the
problem), even though they might not be “good”with respect to their truth
value. Consider, for instance, the following (true) anecdote:

Adele (age 4): “Mommy, I know why they make you turn off your
phone when the plane is taking off.”
Me: “Oh really? Why?”
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Adele: “Because when the plane takes off it’s too noisy to talk on the
phone.”

6. GOOD WRONG IDEAS AND BAD ONES

This is of course wrong; it is wrong even about the direction of
causality. At the same time, it is recognizably a good hypothesis. And it is
a remarkable feature of human cognition that we can simultaneously
recognize the “goodness” of an idea and its falsity. I suggest that we can do
this is because we evaluate a new idea first on the extent to which it is
consistent with the constraints of our abstract error map and only subse-
quently on its truth value or fit to the data.

The idea that a learner first generates and evaluates hypotheses through
the constraints of an abstract error map (and only secondarily through an
“inner-loop” checking the degree to which the hypothesis accounts for the
data) predicts many features of human cognition that seem intuitively to be
true. For instance, we seem to know that we are on the right (or wrong)
track in thinking about a problem well before we know whether our ideas
generate better fits to the data. Arguably this is because the ideas we generate
may have (or lack) key features of the abstract form of the solution to
a problem well before they are in fact solutions to the problem. Similarly, we
seem to have an internal “stopping function” that lets us know we have
arrived at a good idea (or lets us dismiss an idea out of hand) well before we
have tested its predictions. Our “ah ha” moments (see Gopnik, 2000) can
come months, even years, before we have any evidence that our great new
breakthrough idea is true; indeed, even when our great new breakthrough
turns out to be false, it might only slightly diminish our sense of its brilliance.
This is reasonable if our criterion for the elegance of an idea is its congruence
with an error map, rather than with the world. Finally, we seem to have an
intuitive sense of how tractable problems are, even in cases where tractability
does not reduce to technological or resource limitations. In such cases what
it might mean for a problem to be tractable is that the representation of the
problemdthe abstract error mapdsufficiently constrains the search space
for new hypotheses. If this account is correct then learning might sometimes
be facilitated not by changing our prior beliefs or the evidence but merely by
changing how we represent the gap between them. As one outstanding
generator of new hypotheses put it: “The formulation of the problem may
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be more important than the solution, which may simply be a matter of
mathematical or experimental skill” (Einstein, in Chang, 2006, p. 179).

7. ABSTRACT ERROR MAPS AND VARIABILITY
IN LEARNING

As researchers have noted (see Bonawitz chapter, this volume), sampling-
based approaches to Bayesian inference can help account for individual
differences in children’s learning. It is interesting to consider how adding
error maps as a top–down constraint on hypothesis generation might affect
individual variability in learning.

Imagine, for instance, two children, Jane and Michael. Borrowing and
extending the Ullman et al. (2012) example, suppose both children have
an incorrect theory of magnetism. The children are playing with magnets,
paperclips, and pennies but believe that they are playing with magnets and
non-magnets; they have failed to consider the possibility that paperclips
belong in a third category: ferrous non-magnets. Suppose further, that the
children have mis-categorized the paperclips in different ways. Jane (who
has noticed some magnetized paperclips sticking together) has classified the
paperclips as magnets; Michael has classified them with the pennies, as
non-magnets. The children’s different subtheories generate slightly
different prediction errors. Jane wrongly predicts that any paperclip will
interact with any other paperclip. When she gets data to the contrary, she
will have to explain how magnetism might sometimes disappear. Michael
wrongly predicts that no paperclip will interact with any other paperclip;
he will have to explain how magnetism could sometimes appear.

This asymmetry may lead the children to generate quite different abstract
representations of the problem and different abstract criteria that constrain
their search for new ideas. Jane is trying to generate newhypotheses that satisfy
the (perceived) desiderata of including a variable whose value can diminish
over time. Thus, Jane may come up, for instance, with the idea that
magnetism is a kind of energetic force that (like the energy in batteries)
sometimes runs out. Michael, by contrast, represents the problem as
a problem of explaining the unexpected appearance of a rare property (rather
than the less surprising problem of explaining its diminishment or disap-
pearance). Michael may thus be faster to recognize that only objects made of
specific materials can become magnetized and that they can be magnetized
only immediately after the relatively rare event of contacting a magnet.
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Each of these different error maps may lead to new hypotheses that get
different things right and wrong. Jane may correctly think of magnetism as
an energetic force but overlook the role of the particular materials; Michael
may recognize that the property of magnetism can be transferred from some
materials to others but fail to subsume magnetism into the more general
category of a kind of energy. In short, because learners’ theories constrain
what they represent as errors or gaps in their understanding, learners with
even subtly different theories may generate different abstract representations
of the problems they are trying to solve. To the degree that these different
abstract error maps constrain the generation of new hypotheses, differences
in the ways that learners represent the problem they are solving could lead to
quite different learning outcomes.

8. ABSTRACT ERROR MAPS, QUINIAN BOOTSTRAPPING,
AND ANALOGICAL REASONING

The ideas behind theory grammars and stochastic search (Goodman et al.,
2011; Ullman et al., 2012) were themselves partly motivated by another
account of how learners might move beyond hypothesis selection: Qui-
nian bootstrapping (Carey, 2009). Quinian bootstrapping is a proposal for
how learners might generate genuinely new representational resources.
Two key ideas are critical to the account. Quinian bootstrapping depends
first on the learner having access to explicit symbols (e.g. through
language or mathematics). These enable the learner to develop repre-
sentations whose meaning is genuinely novel in that it inheres in the
relationship among the symbols rather than only in earlier concepts (see
also Block, 1986). The learner can then use these to construct “place-
holder” representations that support inductive inferences about the
specific role and meaning of the new concepts.3 For instance, a child may
notice the similarity between the order of words in the count list and
words corresponding to larger analog magnitudes. The words then serve
as a placeholder representation allowing the child to bootstrap an explicit
representational system in which she infers the meaning of the number
words.

3 The computational proposals echo this insofar as variables get their meaning from their
relationship to other terms in the theory grammar and serve as placeholder concepts
(Goodman et al., 2011; Ullman et al., 2012).
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This brief description in no way does justice to the work (see Carey,
2009, for exposition and review; see also Herme & Spelke, 1996 and Spelke,
2003). Here I merely want to note that the current proposal is both indebted
to and compatible with these ideas. In the number example, for instance,
neither the child’s earliest understanding of the count list nor her repre-
sentation of analog magnitudes predicts any similarity between the two.
Insofar as the child is able to constrain the new ideas, she generates to just
those that posit a commonality between the count list and analog magni-
tudes, one could think of that as a constraint on hypothesis generation
imposed by an abstract error map.

Arguably, however, the current proposal is more general than the case
of Quinian bootstrapping in two respects. First, learning need not depend
on the learner’s exposure to explicit linguistic or mathematical symbols
nor the learner happening to notice analogical mappings between repre-
sentations. To the degree that the learner can formulate an abstract
representation of the gaps between her current hypotheses and the
evidence (i.e. by categorizing the problem as one involving an unexpected
conflict between two variables, a diminishing property, an appearing
property), she might constrain the new hypotheses she generates to those
that might fill the gap.

Second, real discontinuities in development (e.g. manifest in the
development of the child’s understanding of number or the development
of the child’s ability to differentiate weight and density; see Carey, 2009,
for exposition and review) are compelling case studies in hypothesis
generation. However, there are many more mundane instances of
hypothesis generation (e.g. as manifest in Adele’s explanation of airplane
regulations) that do not involve radical conceptual change but are also not
merely data driven. Even in such ordinary cases, there is a real puzzle about
how learners think of new ideas. Nothing in the current account depends
on the incommensurability of earlier and later ideas or requires the
construction of altogether new mental symbols. Constraints imposed by
abstract error maps might support the generation of new ideas quite
broadly.

Finally, considering more narrowly just the role of analogical reasoning
(Christie & Gentner, 2010; Gentner et al., 1997; Gentner, 2002; Gentner,
Holyoak, & Kokinov, 2001; Gentner &Markman, 1997; Gentner & Namy,
1999; Gentner & Smith, 2012; Holyoak &Thagard, 1996), it seems clear that
once we have an analogydeither because the relevant relationships are given
to us pedagogically or because we ourselves notice a surprising coincidence in

Finding New Facts; Thinking New Thoughts 283



structural relations across events4dit constrains the hypotheses we generate
(Christie & Gentner, 2010). What makes learning difficult, however, is that
fruitful analogical relations are not always obvious; the critical question is how
we know what kinds of events can be meaningfully compared. In principle,
abstract error maps might serve as higher order constraints, constraining even
the kinds of analogies we generate. If, for instance, you represent a problem as
a problem involving dissipating properties, you can then consider other kinds
of events that involve dissipating properties. In thisway, youmight arrive at an
analogy, for instance, between paperclips losing their sticking power and
batteries losing their charge.

Importantly, however, even when our abstract representation of
a problem does not generate meaningful analogies, it can still effectively
constrain hypothesis generation. If, for instance, we represent being asked to
turn off our phone on the plane as a problem of an unexpected incom-
patibility between events, we can restrict our hypotheses to potential
incompatibilities between phones and planes without analogical reasoning
per se. Similarly, if we represent the problem of sticking paperclips as the
problem of the unexpected appearance or transfer of a property, we can
constrain our hypotheses to those involving specific materials or rare events
without comparing these events to structurally similar ones. Thus, I suggest
that analogical reasoning is an effective constraint on hypothesis generation
insofar as it constrained by the more general ability to come up with an
abstract representation of problems in the first placedand this representation
can constrain hypothesis generation in ways that extend beyond analogical
reasoning.

9. FUNCTIONAL ROLES AS CONSTRAINTS
ON HYPOTHESIS GENERATION

So far I have discussed constraints on hypothesis generation that are, so to
speak, epistemically respectable. Constraints imposed by abstract error maps

4 I suggest that the learner starts with an abstract representation of a problem and this can
constrain the kinds of analogies she generates. Sometimes, however, the learner may
observe an unexpected structural alignment between events and register this alignment as
a coincidence in need of explanation (Griffiths & Tenenbaum, 2007). If the learner
happens to start with an analogy she is looking to explain (rather than starting with
a problem and looking for analogies that might elucidate it), the analogy may itself
support the construction of an abstract error map, constraining the learner’s generation of
new hypotheses to those that might explain the otherwise surprising relational alignment.
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plausibly increase the probability that we will get at least some aspects of the
world right. Intuitively, however, there are less truth-preserving, but
arguably no less advantageous, considerations that seem to constrain the
ideas we generate.

Specifically, we have goals for our ideas. We want our ideas to do things:
to persuade, cajole, impress, explain, deceive, entertain, or instruct. We can
readily distinguish “good” and “bad” ideas on prudential grounds inde-
pendent of the extent to which they get the facts right. Given that we can
evaluate ideas with respect to our goals, it seems plausible that we might also
use our goals to constrain the ways we construct knowledge in the first place.
To the degree that we propose randomized changes to our current
hypotheses subject to the constraint of an abstract representation of what
function we want our ideas to fulfill, we may not only be more likely to
select but also to generate ideas that are in fact likely to do what we want
them to do.

Indeed, the possibility that hypothesis generation is constrained by our
goals may go a long way to explaining the diversity of ideas that human
beings entertain. In science, for instance, it is a desiderata of our hypotheses
that they be falsifiable. This is a functional constraint, not a normative one. It
is in no way incumbent on the truth that it be falsifiable. However, if we
specifically and selectively generate hypotheses that meet the goal of being
falsifiable, we can substantially constrain the space of new ideas. In other
disciplines, by contrast, the functional constraint on generating a hypothesis
is that the idea be plausible within the social, political, and economic
conditions of the day. Ideas are dismissed not for being unfalsifiable but for
being “ahistorical.” In the same vein, novelists may generate new ideas in
proportion to the probability that they are “in character,” engineers to the
extent that the new idea is feasible, business executives to the degree that the
new idea is profitable, and divinity students to the extent that the new idea
might provide spiritual guidance or inspiration.

These of course are merely the functional desiderata of our professions.
As human beings, we look for ideas to fill an even broader range of goals.
Even supposing we were confronted with the same problem in all cases, we
would generate different solutions depending on whether we wanted the
new idea to impress a superior, entertain a crowd, teach a child, win an
election, or woo a lover. Such constraints may or may not serve the function
of getting the world right but they allow us to constrain the space in which
we generate new ideas beyond merely the limit of whatever might be
lawfully expressed in the grammar of our current theories.
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If our goals are the top of our hierarchy of constraints on hypothesis
generation, these goals may probabilistically generate a constraint one level
lower: the criteria for fulfilling those goals. Suppose, for instance, you have
the goal of wanting to get from point A to point B. Having the goal of
navigation might generate a set of subordinate desiderata (e.g. to find
variously, the shortest distance between two points, the fastest route
between two points, the most scenic route between two points, or the route
between two points most likely to run into a certain someone). These
criteria might in turn be more likely to generate some hypotheses for abstract
structural forms than others (e.g. two-dimensional maps may be more
probable than tree structures; see Kemp & Tenenbaum, 2008).

By contrast, if our goal is explanation, then our constraints on
hypothesis generation might include all the criteria that psychologists and
philosophers have proposed for hypothesis selection (e.g. simplicity, non-
circularity, the ability to subsume specific relations under an abstract kind
of relation, an appeal to plausible causal, mechanistic relations; Bonawitz &
Lombrozo, in press; Hempel & Oppenheim, 1948; Keil & Wilson, 2000;
Keleman, 1999; Kitcher, 1989; Legare, Gelman, & Wellman, 2010;
Lombrozo, 2006, 2007, 2012; Lombrozo & Carey, 2006; Salmon, 1984;
Strevens, 2004; Woodward, 2009). Again, these criteria might be more
likely to generate some hypotheses for abstract structural forms than others
(e.g. in this case, tree structures may be more probable than two-
dimensional maps; Kemp & Tenenbaum, 2008). It is a well-established, if
somewhat mysterious, fact that explaining something to oneself can affect
learning and discovery, even in the absence of new data (Amsterlaw &
Wellman, 2006; Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi, de
Leeuw, Chiu, & LaVancher, 1994; Roscoe & Chi, 2007, 2008; Siegler,
2002; Williams & Lombrozo, 2009). If we do have abstract representations
of what might count as good explanations with respect to a problem, and
we could condition randomized changes to current hypotheses on these
desiderata, we might avoid generating any number of hypotheses that are
simple, plausible, grammatically lawful, and unsatisfying. One way in
which explanatory desiderata may support learning is by constraining the
generation of new ideas to those new ideas to those that have a chance of
being, in fact, explanatory.

In pursuing the goals of navigation or explanation, we are arguably trying
to get the world right. However, even when our goals are more venal or
more frivolous, constraining our ideas by the extent to which they serve
a functional goal need not lessen our sensitivity to the facts of the matter.
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Once generated, any hypothesis can be subject to a “fact-checking” process
that assesses the extent to which the new idea predicts observed data. Still,
our willingness to accept a new hypothesis may be a function jointly of its fit
to the criteria set by a desired functional role and its fit to the data. If a new
hypothesis succeeds admirably at the former, it might be accepted despite
substantial difficulties with the latter.

Our all-too-human ability to admire ideas for reasons other than their
truth can provoke considerable and sometimes comedic, hand wringing
about human irrationality. In the latter vein, Stephen Colbert coined the
term “truthiness” to poke fun of what we might value in false, or at the very
least unsubstantiated, ideas. However, if by truthiness we mean something
like an idea’s ability to fill explanatory (or other) criteria generated by
a functional goal, our predilection for truthiness may be a feature, not a bug,
of human cognition.

Indeed, in order to be the kind of organism who can think of new ideas
at all, it may be critical that we are not overly wedded to the facts. The
state of having no new ideas and no new data might be rather like
gambling on a single-armed bandit machine or foraging in a landscape
with a single berry patch; even if the existing payoff is low, there is little
reason to explore. No idea that we do not have will, at the time of not yet
having it, fit the data better than whatever we currently believe. Given the
low odds that random gropings will improve our lot, if we were
committed only to maximizing our best fit to the data, an idea in the hand
might always be preferred to the two not yet even in the bush. If instead
we have truth-independent criteria for hypothesis generation, we might be
motivated to generate ideas that payoff in other ways, by being explana-
tory, entertaining, provocative, or useful. We can find out later if they
are true.

Indeed, it is a curious feature of human cognition that the kinds of goals
that lead us to pursue new ideas are often neither here nor there with respect
to the significance of the ideas themselves. The colonialists did not profit any
less from the Americas because Columbus discovered them in a misguided
search for the West Indies. Similarly, whatever you think of the medieval
monks’ quest for incontrovertible proof of the existence of God, it did not
diminish the magnitude of their contributions to analytic logic. It is not
merely that the merit of our discoveries is independent of the merit of
our motivations but that the merit of our motivations may be precisely
in imposing critical constraints on our search processes and enabling
discovery at all.

Finding New Facts; Thinking New Thoughts 287



10. CONSTRUCTIVISM AND IMAGINATION

I’ll end with a speculation about imagination. There are many ways
in which human beings interact with the world that seem peculiarly
divorced from reality. We confabulate explanations for our behavior, both
in sickness (Gazzaniga, 1998; Phelps & Gazzaniga, 1992) and in health
(Carruthers, 2009; Nichols & Stich, 2000). We develop elaborate, coherent
autobiographical narratives that are false and misleading (Kopelman, 1987;
Kopelman, Ng, & Van den Brooke, 1997). We fret over imagined events.
We engage in pretend play as children and we daydream as adults. We
report our actual dreams as stories. We create and enjoy cultural artifacts
ranging from myths to movies.

These phenomena are united primarily in being puzzling. Given our
considerable aptitude for exploring the real world, why is so much of
human cognition devoted to the construction and contemplation of
fictional ones? What advantage does unreality confer that we should find
it so compelling? Researchers have long pointed to the value of being
able to reason counterfactually for planning, for causal reasoning, and for
novel interventions (Gopnik, 1990; Harris, 2000; Harris, German, &
Mills, 1996; Weisberg & Bloom, 2009; Buchsbaum, Bridgers, Weisber, &
Gopnik, 2012; Walker & Gopnik, under contract; Weisberg & Sobel,
2012). However, the demands of counterfactual reasoning would not
seem to require the wanton disengagement with reality manifest across
these diverse cognitive phenomena. As Jerry Fodor noted sardonically in
response to Steven Pinker’s suggestion that we appreciate fiction because
it offers us insight into situations we might encounter in real life:

. what if it turns out that, having just used the ring that I got by kidnapping
a dwarf to payoff the giants who built me my new castle, I should discover that it
is the very ring that I need in order to continue to be immortal and rule the world?
It is important to think out the options betimes, because a thing like that could
happen to anyone and you can never have too much insurance (Fodor, 1998).

Here is a different proposal. What matters about our fictions is not that
they tell us the content of possible worlds or that they exercise our ability to
reason through the consequences of false premises. What matters is our
ability to create the false premises in the first place. Being able to disengage
from data may be requisite to being the kind of creature that can go beyond
data-driven learning. Indeed, it may be that thinking of new ideas requires
precisely the ability to impose a kind of cognitive firewall between the
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criteria for constructing an idea and the criteria for verifying it. This is not to
say that there are not constraints, even on our fictions (Harris, 2000;
Shtulman, 2009; Weisberg & Bloom, 2009; Weisberg & Goodstein, 2009;
Weisberg & Sobel, 2012; Wyman, Rakoczy, & Tomasello, 2009).
However, the constraints most important for learning may be “narrative”
constraints. Good narratives do not have to be true, but they do have to do
all of the following: provide an abstract representation of a problem and its
solution, satisfy criteria consistent with the narrative goal (e.g. perhaps by
fulfilling causal and subsumptive explanatory demands), and fulfill a func-
tional role for entertainment, persuasion, illustration, provocation, expla-
nation, soothing, or stimulation. In short, the constraints on a good narrative
are plausibly the rational constraints for hypothesis generation generally.

On this account, we spend our time telling stories for the same reason
that monkeys spend their time climbing trees, not because it usually solves
a problem but because it is hard to know when a problem will appear. If we
engage in the activity continually, then when a problem does come along,
we may find ourselves making the right leap at the right time. In engaging,
from early childhood onward, in acts of fictional narratives, in telling stories
about what we experience even in our sleep, in retaining this ability even in
the face of devastating insults to our bodies and brains, and in finding this
engagement sufficiently pleasurable that we seek it out in our cinemas,
theaters, novels, and fire circles, we may be manifesting the most distinc-
tively human aspect of our ability to learn: the ability to step away from the
real world in order to better see the world as it really is.
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Abstract

Researchers have argued that other people provide not only great opportunities for
facilitating children’s learning but also great risks. Research on pedagogical reasoning
has argued children come prepared to identify and capitalize on others’ helpfulness to
teach, and this pedagogical reasoning allows children to learn rapidly and robustly. In
contrast, research on epistemic trust has focused on how the testimony of others is not
constrained to be veridical, and therefore, children must be prepared to identify which
informants to trust for information. Although these problems are clearly related, these
two literatures have, thus far, existed relatively independently of each other. We present
a formal analysis of learning from informants that unifies and fills gaps in each of these
literatures. Our analysis explains why teachingdlearning from a knowledgeable and
helpful informantdsupports more robust inferences. We show that our account
predicts specific inferences supported in pedagogical situations better than a standard
account of learning from teaching. Our analysis also suggests that epistemic trust
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should depend on inferences about others’ knowledge and helpfulness. We show that
our knowledge and helpfulness account explains children’s behavior in epistemic trust
tasks better than the standard knowledge-only account. We conclude by discussing
implications for development and outline important questions raised by viewing
learning from testimony as joint inference over others’ knowledge and helpfulness.

One of the most remarkable aspects of human learning is the ability of
children to learn so much, so quickly. This ability defies the common
wisdom from learning theory, where research has suggested that learning
should be impossibly hard (e.g. Gold, 1967). Indeed, humans’ ability to learn
is so robust that we, but not other animals, are able to accumulate knowledge
over generations (Tomasello, 1999). What underlies these remarkable
abilities?

One proposed explanation for these impressive feats of learning is an
intrinsic understanding of teaching, termed natural pedagogy (Csibra &
Gergely, 2009). Csibra and Gergely (2009) proposed that people sponta-
neously engage in, and that children come prepared to identify and
understand, acts of teaching. In short, they argue that pedagogy is indicated
by ostensive cuesdforming joint attention, speaking in child-directed tones,
etc.dand in these situations, the information presented is understood to be
purposefully communicated and generalizable.

In an effort to understand why pedagogical situations might afford more
rapid learning, recent research has presented a formal analysis of pedagogical
data selection and its implications for learning, instantiated in a computa-
tional model (Shafto & Goodman, 2008). Pedagogical reasoning is
formalized as a two-part problem: from the teacher’s perspective, which data
should be chosen for the learner, and from the learner’s perspective, which
inferences are afforded by the teacher’s choices. The teacher is assumed to be
knowledgeable and helpfuldshe knows the correct hypothesis and chooses
examples to increase the learner’s belief in that hypothesis. The learner is
assumed to know that the teacher is knowledgeable and helpful. The learner
then updates her beliefs accordingly. Recent research has investigated the
predictions of the model, suggesting that children make stronger inferences
from pedagogically chosen data as predicted by the model (Bonawitz et al.,
2011; Buchbaum, Griffiths, Gopnik, & Shafto, 2011).

Pedagogical reasoning assumes that informants are trustworthy, but
children cannot simply trust everyone they encounter. Recent research on
epistemic trust has investigated how children identify which informants to
trust for information. Koenig and Harris (2005) showed that by 4 years of
age children reliably preferred previously correct informants over incorrect
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informants in a word-learning task. Subsequent research has shown that
children make inferences about informants based on relative accuracy
(Fitneva & Dunfield, 2010; Pasquini, Corriveau, Koenig, & Harris, 2007),
group consensus (Corriveau, Fusaro, & Harris, 2009), informant familiarity
(Corriveau & Harris, 2009), expertise (Sobel & Corriveau, 2010), and more
(Fusaro & Harris, 2008; Jaswal & Neely, 2006; Mascaro & Sperber, 2009;
Kinzler, Corriveau, & Harris, 2011; Nurmsoo & Robinson, 2009;
VanderBorght, 2009).

Children’s success on epistemic trust tasks is generally interpreted as
reflecting their ability to track informants’ knowledge. However, there is
reason to believe that knowledge is not the only factor at play. Intuitively,
the simple fact that someone is knowledgeable does not preclude them from
deceiving. Indeed, a parallel line of research has suggested that 4-year old
children are also able to reason about informants’mal-intentions (Mascaro &
Sperber, 2009). Specifically, children are able to use behavioral cues such as
violence as well as information from other informantsde.g. that guy is
a liardto make judgments about informants’ reliability. This raises the
possibility that 4-year olds’ performance in epistemic trust may not be simply
attributable to inferences about knowledge alone.

We propose that pedagogical reasoning and epistemic trust are two sides
of the same coin. We present a unified framework, within which peda-
gogical reasoning is a special case of a broader set of models which allow
informants to be knowledgeable or not and helpful or not (Shafto, Eaves,
Navarro, & Perfors, 2012). We will show how this model can account for
learning in pedagogical settings and findings from the literature on epistemic
trust, by focusing on specific examples from these literatures. We conclude
by discussing implications for cognitive development, connections to related
areas of research, and important future directions.

1. A UNIFIED FRAMEWORK OF EPISTEMIC TRUST
AND PEDAGOGY

In pedagogical reasoning, informants are assumed to be knowledgeable and
helpful; learners use this assumption to guide learning. In epistemic trust,
informants may be knowledgeable or not or helpful or not; learners must
simultaneously make inferences about the world and about their informants.
Therefore, a unified framework must formalize the behavior of different
kinds of informants and specify how learners leverage an informant’s
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testimony when the informant’s kind is known and when the informant’s
kind is unknown.

Recent work has formalized aspects of these problems. Shafto and
Goodman (2008) proposed a model of pedagogical sampling. Their model
formalizes teaching by a knowledgeable and helpful informant as choosing
data that tend to maximize the learner’s belief in the correct hypothesis and
learning as updating one’s beliefs assuming that the data have been chosen by
a knowledgeable and helpful teacher. Shafto et al. (2012) proposed a model
of epistemic trust, where learners simultaneously learn about the world and
infer whether informants are knowledgeable or not and helpful or not. Our
goal here is to sketch the general framework that unifies these models and to
show how this provides a single account for children’s behavior across these
tasks.

We begin by sketching the modeling framework. We then consider two
classes of behavioral tasks that can be captured by the modeldpedagogical
learning and epistemic trustdand contrast current theoretical accounts with
the account offered by the model. By accounting for data across an array of
recent work in pedagogy and trust, we unify learning in these scenarios
under a common framework.

1.1. The Unified Framework
A model of learning from informants needs to capture two things: how
informants select data and how learners learn from different kinds of infor-
mants. We adopt a standard probabilistic learning framework (Tenenbaum,
Griffiths, & Kemp, 2006). In probabilistic learning, the learner’s goal is to
update their belief about a hypothesis given data. Bayes’ rule dictates that these
posterior beliefs are proportional to the product of two quantities: the prior
probability of the hypothesis and the probability of observing the data given
the hypothesis is true. Thus, given a generative model for the datada model
that specifies how hypotheses are selected and how data are sampled given
hypothesesdBayes’ rule specifies how to invert the processdhow to infer
the hypothesis and the sampling model, given the data.

Generally, models of learning assume that data are randomly sampled, that
is, data are sampled in proportion to their consistency with the hypothesis. In
social learning, it seems that random sampling is rarely applicable. People
choose data purposefully. Data are not sampled based on their consistency
with the hypothesis, but based on the informant’s helpfulness, given her
knowledge. The key challenge here is to formalize how different kinds of

298 Baxter S. Eaves Jr. and Patrick Shafto



informants produce data. To do this, we must specify how knowledgeability
and helpfulness relate to the choices informants make.

Figure 11.1 presents two graphical models depicting how helpfulness and
knowledgeability relate to informants’ actions in causal and word learning.
Graphical models are a powerful tool for defining causal relationships among
variables (Pearl, 2009; Spirtes, Glymour, & Scheines, 1993). The fundamental
components of graphical models are nodes and edges. A node represents
a latent or observed variable; an edge represents a conditional dependency
between nodes. Edges are directed and point from parents to children.

Here the goal is to specify how two latent variables corresponding to
informants’ knowledgeability, k, and helpfulness, h, affect their choice of
action (see Fig. 11.1). Knowledgeability determines the relationship
between the informant’s beliefs, b, and the true state of the world w0.
Helpfulness determines the types of actions, a, informants choose based on
their beliefs. Actions in turn produce effects, e, based on the state of the
world.

More specifically, knowledgeability, k, and helpfulness, h, are binary-
valued variables corresponding to knowledgeable/naïve and helpful/
unhelpful. Beliefs, b, model informants’ beliefs about the world, w; b belongs
to B, the set of possible beliefs; w belongs toW, the set of states of the world.
In word learning, B and W are sets of labels, and in causal learning, they are
sets of causal graphs. For example, in a game in which an informant points to
one of two cups under which a ball is hidden, B and W would both be
composed of the set of possible locations of the ball, {cupl, cup2}. This task

Causal learning Word learning 

Figure 11.1 Graphical representation of the model. On the left is the causal learning
model. On the right is the word-learning model. In causal learning, an informant’s
action, a, is an intervention on the world, w, which elicits a response from the world: an
effect, e. In word learning, actions are labels and do not affect the world; thus, the effect
node is not present in the word learning model.
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can be thought of as a labeling task because the informant labels a cup as the
one containing the ball.

Knowledgeability specifies the relationship between the informant’s
beliefs and the world. If an informant is knowledgeable, then her beliefs, b,
correspond to the true state of the world, w0; she would knowwhich cup the
ball is under. In contrast, if an informant is naive, then her beliefs are uniform
over the set of possible beliefs; she would not know which cup the ball was
under. More formally,

PIðb ¼ w0jkÞ ¼
(
1 if knowledgeable

1=jW j if naïve
; (11.1)

where jWj is number of possible hypotheses about the world.
Actions, a, are chosen based on the informant’s helpfulness and beliefs. If

an informant is helpful, she will act to maximize the learner’s belief in the
belief she holds; if she is not helpful, she will act to minimize the learner’s
belief in the belief she holds. Formally,

PIðdjbIÞfPLðbL ¼ bI jdÞa; (11.2)

where

a ¼
(
1 if helpful

�1 if not helpful:
(11.3)

When a is 1, the informant chooses data that tend to lead the learner to
her belief. When a is �1, the informant chooses data that tend to lead the
learner away from her belief. In the cup game, a knowledgeable and helpful
informant would point to the cup she believed the ball was hidden under;
a knowledgeable but unhelpful informant would point to the cup opposite
the one she believed the ball was hidden under. Because actions are based on
informants’ beliefs, and beliefs are based on informants’ knowledgeability,
naive informants, regardless of helpfulness, will appear to produce actions
scattershot. In the cup game, a naive informant will point to the correct cup
half of the time. The helpful naive informant points at the correct cup
because she has guessed correctly and the unhelpful naive informant points
at the correct cup because she believes the ball is under the wrong cup and
attempts to lead the learner away from it.

In causal learning (see Fig. 11.1), there is an additional factor, the effects
of actions. The effects of actions are determined by the action chosen and the
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true causal structure of the world. In word learning (see Fig. 11.1), the action
is an utterance, and because an utterance does not affect the world, the effect
node is removed.

This sampling model allows us to consider which actions are likely to be
chosen by different kinds of informants and, given actions, allows learners to
infer what kind of informant they are dealing with. In different social (and
experimental) scenarios, informants’ helpfulness and knowledgeability may
implicitly take on certain values. When the informant claims to be
knowledgeable and helpful or if certain social cues are present (Csibra &
Gergely, 2009), learners may assume the informant is knowledgeable and
helpful. Similarly, learners may be exposed to cues which lead them to
believe an informant is knowledgeable and unhelpful (deceptive). Impor-
tantly, Bayesian inference allows us to learn who to trust and what to infer
from informants’ actions.

1.2. Modeling Pedagogical Learning
To illustrate how the model accounts for learning from pedagogically
selected data, we consider two sets of results. The first is from Shafto and
Goodman (2008), which examined pedagogical sampling and how it affects
what is learned, and the second is from Bonawitz et al. (2011), which looked
at how pedagogy affects future exploration. In both these cases, we contrast
the model predictions with the strong sampling proposal offered by Xu and
Tenenbaum (2007).

In Shafto and Goodman (2008), participants played a concept learning
game in which they were to locate a hidden rectangle using pairs of points
labeled as inside (positive) or outside the rectangle (negative). In the peda-
gogical sampling condition, participants both taught and learned. When
teaching, participants observed the rectangle and chose points to mark.
When learning, participants saw labeled points on a blank screen and then
drew a rectangle which they believed was the actual rectangle the teacher
intended. In the non-pedagogical sampling condition, participants searched
for the rectangle themselves. They observed a blank screen and chose points
to have labeled. Once the points were placed on the screen, the software
labeled them as in or out of the rectangle.

The results showed that in the pedagogical conditions teachers chose to
place pairs of positive examples at opposite corners and pairs of negative
examples at opposite edges or corners. The intuition here is that teachers
choose points to maximize a learner’s belief in a single hypothesis and
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placing the positive examples at the opposite corners rules out all rectangles
smaller than the actual rectangle (see also Rhodes, Gelman, & Brickman,
2010).

Learners’ inferences in the pedagogical condition showed a distinct
pattern. Rectangles were drawn with the two positive examples in the
corners and with edges close to negative examples. In the nonpedagogical
sampling condition, rectangles drawn by participants did not show any
discernible pattern, suggesting that learners in the pedagogical condition
inferred that teachers choose data purposefullydpositive examples in the
corners of the rectangle, and negative examples at the boundariesdwhile
learners in the non-pedagogical condition did not.

Previous accounts of word learning have suggested that learners’
inferences from teachers’ demonstrations in word learning may be
modeled by assuming strong sampling (Xu & Tenenbaum, 2007; see also
Tenenbaum, 1999). In strong sampling, learners assume that examples are
selected randomly from the true concept. Because this creates a natural
preference for smaller concepts (that are consistent with the examples),
given only positive examples, learners will rapidly converge to the correct
concept. Strong sampling can, therefore, account for learning from posi-
tive examples. But because examples are assumed to be randomly sampled,
it cannot explain teachers’ preference for examples in the corners. Simi-
larly, because strong sampling assumes that only positive examples are
chosen, it cannot explain negative example selection or learning from
negative examples.

Under our model, a teacher is someone who is knowledgeable, k¼ 1,
and helpful, h¼ 1; they know about the world, and they want learners to
as well. Teachers therefore choose data to increase learners’ beliefs in the
true state of the world (see Eqn 11.2). In this case, because the teacher is
knowledgeable, her belief is assumed to match the true state of the world,
bi ¼ w0, and because she is helpful, the exponent, a, is 1. In the rectangle
game, W and B are both the set of possible rectangles, where b is a sin-
gle rectangle, and w0 is the true rectangle. Possible data are the set of
possible pairs of negative or positive examples. For positive examples, if
a teacher chooses narrow data, positive examples closer to the center of
the true rectangle, they rule out fewer incorrect rectangles than if they
choose data in the corners, Pðw0jD ¼ narrowÞ < Pðw0jD ¼ cornersÞ,
and therefore, PðD ¼ narrowjw0Þ < PðD ¼ cornersjw0Þ.

Negative examples should be chosen to constrain the number of possible
rectangles. Choosing negative examples at the sides rules out all rectangles
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larger than the boundaries of the points. As before, placing negative
examples away from the rectangle boundaries (wide data) rules out fewer
rectangles larger than the target and makes learning the target rectangle
less likely, Pðw0jD ¼ wideÞ < Pðw0jD ¼ sidesÞ, and therefore,
PðD ¼ widejw0Þ < PðD ¼ sidesjw0Þ. Because learners use their knowl-
edge of how points are chosen, when points are chosen at random (non-
pedagogical condition), the model cannot make assumptions about why
specific points were chosen and therefore chooses randomly based on the
examples present.

The model explains why faster learning is achieved in pedagogical
learning. Using their knowledge of how teachers choose data, people are
able to infer the correct rectangle with two points, rather than six
perfectly placed points (four negative examples, one at each side to
constrain the maximum size and two positive examples at opposite
corners to constrain the minimum size). One implication of this increased
confidence is that after observing pedagogically sampled data, one may be
less curious than after observing the same data chosen in a nonpedagogical
setting. Bonawitz et al. (2011) explored this possibility: would learners
presented with pedagogically sampled data be less likely to search for
additional data?

Children were presented with a novel, complex-looking toy. Unbe-
knownst to the children, the toy was built to have four nonobvious func-
tions: a knob that caused squeaking, a key that made music, a button that
turned on a light, and a tube with a mirror that reversed the child’s face. The
toy was designed to appear complex looking to lead children to believe that
there could be many functions of the toy.

Children were randomly assigned to one of a number of conditions. We
focus on two: the pedagogical condition and the accidental condition. These
conditions were set up such that children observed the same data: pulling
a knob causes squeaking. Across conditions, the social context was manip-
ulated. In the pedagogical condition, the demonstrator was presented as
knowledgeable (stating, “This is my toy”) and helpful [via pedagogical cues
such as establishing joint attention, repeating the child’s name, etc. (Csibra &
Gergely, 2009)]. In the accidental condition, the demonstrator was pre-
sented as naive (saying, “Look at this toy I found”) and the demonstration
was presented as accidental. As the demonstrator put the toy down, their
hand hit the knob, causing a squeak. In both conditions, there were two
demonstrations to ensure that the child saw the cause of the squeak. After the
demonstration, the child was allowed to play with the toy. Experimenters
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tracked various measures of how much exploration children engaged in as
well as the total number of built-in functions children discovered. The
results showed that children in the pedagogical condition explored less and
discovered fewer functions of the toy than did children in the accidental
condition.

Under strong sampling, data are selected randomly from the true
concept. However, strong sampling does not specify how much data to
select. Therefore, strong sampling offers no explanation as to why a specific
number of demonstrations are better than any other.

To explain these results under our model, we must specify the possible
beliefs/states of the world and data. Possible states of the world (and beliefs)
include different numbers of possible functions. W includes the possibility
that the toy has no functions w¼ 0, one function w¼ 1, two functions
w¼ 2, etc. Possible actions include no demonstration a¼ 0, performing one
action a¼ 1, two actions a¼ 2, etc. In the experiment, the question is what
should a learner infer from the teacher’s choice to only demonstrate that
pulling the knob leads to squeaking. Intuitively, given the teacher is
knowledgeable and helpful, if the toy had any other functions, we would
expect the teacher to have shown them to us. The model predicts that,
given a toy with n functions, i.e. w0 ¼ n, we would expect n demonstra-
tions, a¼ n. Consider what would happen if the teacher demonstrated only
n� 1 functions. The learner could rule out all hypotheses in which there are
less than n� 1 functions. However, all hypotheses with n or more functions
are still possible. By demonstrating one more function, the teacher
would eliminate one more possibility, increasing the learner’s belief in n
functions, Pðw ¼ nja ¼ nÞ > Pðw ¼ nja ¼ n� 1Þ. Thus, the model
predicts that teachers demonstrate all functions, Pða ¼ njw0 ¼ nÞ >
Pða ¼ n� 1jw0 ¼ nÞ, and given such a demonstration, learners infer
no more functions exist, Pðw ¼ nja ¼ nÞ > Pðw ¼ nþ 1ja ¼ nÞ.1
Because the chance that other functions exist is low, there is no need to
spend time looking for them.

On the other hand, when the demonstrator accidentally elicits a squeaks,
the data rule out the possibility that there are zero functions, but because the
action and effect were a result of a chance occurrence (random sampling),
one cannot assume there are not more functions. In this case, if one wishes to
learn about the toy, one must explore.

1 This discussion assumes that all hypotheses are equally likely. The assumption is made for
expository simplicity, and the conclusions hold across a range of scenarios.
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1.3. Modeling Epistemic Trust
The previous section focuses on situations inwhich the knowledge and intent
of the informant are known (or can be reasonably assumed). Of course, that is
not the problem that people typically face in the world. Informants may or
may not be trustworthy, and research shows that children track who to trust.
We present a standard account of children’s reasoningdthe knowledge
heuristics accountdand contrast it with our own. We begin by discussing
three representative findings from epistemic trust literature. Finally, we will
show how our model of learning from informants can account for all the
results discussed and, thus, all corresponding heuristics.

The trust tasks examined in this section each follow a similar format.
Learners are given some demonstrations, which they can use to make
inferences about their informants. For example, in Pasquini et al. (2007),
informants label four common objects with varying accuracy; in Corriveau,
Fusaro, et al. (2009), several informants point to an object after hearing
a label given by an experimenter. After the demonstration, learners must
choose which informant to ask or which informant’s information to endorse
when faced with a novel object or label (novel trial). The key question is
whether children show systematic preferences for different informants, and if
so, what kinds of experience lead children to choose one informant over
another?

In Pasquini et al. (2007), kids observed two informants label four common
objects, such as a ball or a shoe, with varying accuracy: 100%, 75%, 25%, or
0%. After these familiar trials, children were presented a novel object. In ask
trials, children asked one of the two informants for the label, and in endorse
trials, both informants labeled the object with different labels, and the child
was then asked which she thought the object was called. The results showed
that children indeed form preferences for more accurate informants, meaning
children prefer to ask, or endorse the label given bymore accurate informants
more often.Qualitatively, for both 3- and 4-year olds, the results showed that
the preference for the more accurate informant decreased with the relative
accuracy of the informants, e.g. children in the 75% versus 0% accurate
condition showed a higher preference for the 75% accurate informant than
did children in the 75% versus 25% accurate condition. However, whereas
3-year olds showed less and less differentiation across the 100% versus 0%,
100% versus 25%, 75% versus 0%, and 75% versus 25% conditions, 4-year olds
at minimum show a sharp differentiation of the 75 versus 25 condition from
the others and appear to have somewhat improved performance in the 100%
versus 0% condition relative to the others.
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To explain these differences, Pasquini et al. (2007) suggested that
children’s choices are guided by heuristic monitoring of the inaccuracy of
the informant. That is, to begin both informants are categorized as
trustworthy, but when an informant labels incorrectly, that informant is
categorized as inaccurate. According to Pasquini et al. (2007), for 3-year
olds, the strategy stops here. An informant is either accurate or inaccurate,
and this binary explanation accounts for 3-year olds’ poor performance
when both informants have labeled one or more object inaccurately. To
explain the differences between 3- and 4-year olds, Pasquini et al. (2007)
propose that 4-year olds also use the frequency of informants’ mislabelings
and are thus better able to choose between inaccurate informants than
3-year olds.

Corriveau and Harris (2009) carried out an experiment nearly identical
to Pasquini et al. (2007), with two differences: one of the informants was the
child’s preschool teacher, and rather than parametrically altering accuracy on
familiar object trials, informants labeled 100% or 0% accurately. When the
child first encountered the two informants, one novel and one familiar, the
child was presented with a novel object and answered ask and endorse
questions. Both 3- and 4-year-old children preferred the familiar informant.
After the novel trials, children observed familiar object trials in which the
familiar informant labeled 100% accurately and the novel informant labeled
0% accurately or the familiar informant labeled 0% accurately and the novel
informant labeled 100% accurately. Four-year olds preferred the familiar
informant after having seen her label correctly, more so than in novel trials.
When the familiar informant labeled incorrectly, 4-year olds preferred the
novel informant who had labeled correctly. Three-year olds still preferred
the familiar informant even when she had labeled incorrectly.

According to the heuristic account proposed by Pasquini et al. (2007), all
informants initially belong to the trustworthy category. If this were true,
given a novel and a familiar informant, children should choose both
informants equally because they are both trustworthy. Corriveau and Harris
(2009) suggest that perhaps children have witnessed the familiar informant
label accurately many times in the past and have some bias toward accurate
information which would create the familiarity bias. Under this proposal,
children must be tracking some kind of frequency of correct answers. Given
that 3-year olds also show a preference for familiar informants, this creates
a contradiction with the previous experiment, where their behavior was
explained by not attending to the frequency information but by categori-
zation. To explain the current results, it seems necessary to propose that
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familiarity is an additional heuristic that guides children’s choices in the
pretest.

For the posttest (once the informants have labeled familiar objects),
a familiarity and accuracy account would have to specify how these two
factors interact. When the familiar informant labeled accurately and the
novel informant labeled inaccurately, 4-year olds’ preference for the familiar
informant increased compared to the pretest, but 3-year olds’ preference
remained the same. When the familiar informant labeled inaccurately and
the novel informant labeled accurately, 4-year olds then preferred the novel
informant, but 3-year olds continued to prefer the familiar informant. If
children used the raw frequency of informant’s truthful productions, we
would expect to see preferences for the familiar informant to remain for
both groups even when the familiar informant labeled inaccurately, as it
would be reasonable to assume that a teacher has produced enough truthful
information (likely hundreds of productions) to outweigh four mislabelings.
Accordingly, Corriveau and Harris (2009) suggest that there is a bias for
recent accuracy as well. This, however, does not explain 3-year olds’
continued preference for the inaccurately labeling familiar informant or why
their preference for the familiar informant does not increase when she
labeled accurately. For this reason, the authors suggest that for 3-year olds,
familiarity, and not the productions of information that comprise it,
outweighs accuracy as a heuristic.

Corriveau, Fusaro, et al. (2009) looked at how children choose infor-
mants and data when learning about novel objects from a group of novel
informants given only a set of novel labels. Four informants are presented
with three novel objects. An experimenter asks, “Show me the modi” after
which, each informant points to an object. Three informants agree and one
dissents. This occurs for several trials. On each trial, the same informants
agree, and the same informant dissents. After the informants have pointed,
the child is asked which she believes is the modi. Here, learners have only
labels from a few informants by which to make inferences and therefore
cannot use an inaccuracy strategy. The results showed that children prefer
the object indicated by the majority and that there were no differences in age
groups. After group trials, children participated in novel object labeling trials
in which one informant was from the majority and the other was the
dissenter. Again, children preferred the informant from the majority, and
there was no effect of age.

Corriveau, Fusaro, et al. (2009) argue that children prefer informants
who are part of a broader consensus and that children may believe
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informants from a majority are more epistemically trustworthy or may
otherwise form some kind of emotional attraction to non-dissenters. In
other words, children exhibit a heuristic majority bias: when learners have
only a set of novel object labels, they choose the one that is most agreed
upon. Note that this bias cannot be derived from previous biases. The
accuracy bias cannot be applied because there is only novel information, so
learners cannot judge the accuracy of the information; the familiarity bias
cannot be applied because all the informants are novel. Also note that in this
study, no developmental differences were observed, and therefore, no
developmental change in this ability was proposed.

These studies paint an interesting picture of children’s abilities: they show
remarkable subtlety in reasoning, with developmental differences in some
cases, but not others. For each subtle variation in behavior, the heuristic
account proposes more heuristics, leading to complex and often under-
specified interactions given a specific scenario or a developmental stage. The
accuracy bias works differently for 3- and 4-year olds. When at least one
informant is familiar, it works differently still for 4-year olds and not at all for
3-year olds. When groups of informants are involved, 3- and 4-year olds do
not differ, they use the same heuristic of choosing with the majority.
Similarly, it is not clear how the existing heuristics apply in minimally
different scenarios. If a dissenting informant were familiar, which heuristic
would children use: majority or familiarity? Would this change with age?
What is needed is an account that provides a more parsimonious explanation
of existing phenomena and makes principled generalizations across scenarios.

We propose that behavior can be understood as joint inference about
informants’ knowledge and intent (Shafto et al., 2012). The model observes
informants’ actions and decides which kind of informant is most likely to
have produced those actions, e.g. helpful/unhelpful, knowledgeable/naive.
On novel trials, the model uses what it knows about how different types of
informants choose data, along with the inferences it has made about its
informants, to predict which informant is most likely to produce correct
labels in the future.

The model both learns about informants and predicts their future
behavior. In Pasquini et al. (2007) and Corriveau and Harris (2009), during
familiar object labelings, the values of w0 and a are fixed because the objects
are familiar and the labels are observed. Learners leverage this information in
order to infer k and h, whether an informant is knowledgeable and helpful.
Informants who label more accurately are more likely to be helpful. Infor-
mants who always label accurately are likely helpful and knowledgeable, and
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informants who never label correctly are likely knowledgeable, but unhelpful
because naive informants, whether helpful or not, will occasionally produce
the correct labels. Like in the account proposed by Pasquini et al. (2007),
learners use accuracy/inaccuracy to choose informants. However, rather than
an ad hoc approach based on tallying correct answers directly, we propose that
children are actually inferring unobserved causal properties of infor-
mantsdwhether the informant is knowledgeable and whether the informant
is helpful. Developmental differences are explained in our framework as
changing assumptions about people. While 4-year olds’ behavior is best
explained by a model that infers knowledgeability and helpfulness, 3-year
olds’ behavior is best explained by a model that infers knowledgeability but
assumes helpfulness. Based on knowledgeability alone, informants who have
mislabeled one ormore times become similar.Under themodel, this accounts
for 3-year olds’ performance in choosing between inaccurate informants.

Inferences are made similarly when learning from familiar informants. In
the case of Corriveau and Harris (2009), where the informant is a preschool
teacher, familiarity is modeled as positive past experience. In contrast with
Corriveau and Harris (2009), in our model, this experience manifests as
strengthened prior beliefs on k and h (see Equation 11.5 and 11.7) rather
than a heuristic assumption of a truth bias. In familiar object labeling trials,
learners’ preferences are not affected as much by the familiar informant’s
labels as they are by the novel informant’s labels. Learners already have
strong beliefs about the familiar informant. Stronger beliefs are more difficult
to override; it takes more evidence to do so. Age differences are explained as
earlier. Without the ability to account for the helpfulness of informants, the
knowledge-only model does not differentiate as much between always and
never accurate informants.

The models account for the result in both phases of Corriveau, Fusaro,
et al. (2009), and both show similar predictions. Because there are only
informants’ labels from which to infer the correct label, actions are fixed, and
the informants’ knowledgeability and helpfulness as well as the correct
object must be learned. Because the probability of naive, or not helpful
informants converging on the same label is low, the model infers that the
agreeing informants are likely knowledgeable and helpful and indicate the
correct label. After the model has made inferences about informants’
knowledgeability and helpfulness, it can use this information to decide
which informants are more likely to label correctly in the future. The model
chooses informants based on the probability they will label correctly in the
future, accounting for the preference for non-dissenting informants.
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Therefore, the majority bias proposed by Corriveau, Fusaro, et al. (2009) is
a manifestation of the non-dissenting informant’s past labelings, which in the
group trials were inferred to be accurate.

Three findings from the epistemic trust literaturedparametrically
varying preference for accurate informants, variations in preference based of
familiarity and accuracy, and preference for informants from groups over
dissentersdillustrate differences between a standard heuristic-based account
and our modeling framework. Whereas the heuristic account incurs
a proliferation of explanations to account for variations depending on the
task and children’s location on a developmental trajectory, we propose an
inference framework that explains variations in children’s behavior across
tasks in terms of reasoning about informants’ knowledge and helpfulness.
We showed that the model explains why these heuristics work, and as such,
they need not be thought of as heuristics, but as similar inferences under
a common mechanism. Children learn about informants underlying
epistemic qualities and in turn use what they have learned to infer infor-
mants’ future accuracy.

2. CONNECTIONS, IMPLICATIONS, AND FUTURE
DIRECTIONS

Researchers almost universally agree that other people play a key role in
explaining the power of human learning. Researchers also agree that
learning from others leaves us potentially vulnerable to misinformation.
These two lines of researchdon pedagogical reasoning and epistemic
trustdhave advanced largely independently of each other. We have pre-
sented a unified approach in which pedagogical reasoning and epistemic
trust are different facets of the same problem: reasoning about other people’s
knowledge and intent. We have illustrated how our framework predicts
pedagogical data selection and its implications for learning and explains
children’s behavior when learning who to trust for information.

We have contrasted our approach with an account from each of these
literatures: strong sampling for pedagogical learning and heuristic moni-
toring for epistemic trust. In each case, we argue that our model represents
an improvement over these previous accounts. Unlike strong sampling, our
approach to pedagogical reasoning explains teachers’ choices of evidence,
learning from negative evidence and learning from variable amounts of data.
Unlike the heuristic account, our approach explains variation in children’s
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behavior across situations and developmental stages in terms of a simple set of
principles based on reasoning about informants’ knowledge and helpfulness.

Together, these arguments illustrate how pedagogical learning and
epistemic trust can be viewed as two sides of the same coin. In pedagogical
learning, the informant is known to be knowledgeable and helpful, and the
goal is to learn about the world. In epistemic trust, often the world is known,
and the goal is to learn about the informant. In the former case, knowledge
about the informant provides leverage for learning about the world. In the
latter, knowledge about the world provides leverage for learning about the
informant.

However, as demonstrated by Corriveau, Fusaro, et al. (2009), learning
about the world and informants may also occur simultaneously, and our
model captures this ability too. This highlights a remarkable ability of
childrendthe ability to perform joint inference (or learning) over multiple
variables. While in some ways this appears remarkably sophisticated, this
ability is the crux of the explanation for how social learning affects learning
about the world; arguably, the problem of childhood is one of learning
about both the physical and social worlds.

In the remainder of the paper, we briefly consider connections to
previous research, implications for other literatures, and outline potential
future directions.

2.1. Connections
Our unified framework suggests that children reason about other people’s
knowledge and helpfulness. This proposal contrasts with standard work on
theory of mind (ToM), where children have been shown to have difficulty
reasoning about other people’s knowledge (Baron-Cohen, Leslie, & Frith,
1985; Wimmer & Perner, 1983; Wellman, Cross, & Watson, 2001). In
standard ToM tasks, children must reason about other people’s behavior
when the person’s beliefs are false. In these tasks, results suggest that 3-year-
old children have difficulty predicting people’s behavior, while 4-year old
children do not (but see Onishi & Baillargeon, 2005). The key element of
these tasks is that the actor’s beliefs are not in accord with the truth while the
child’s are.

In contrast, in the pedagogical reasoning tasks we considered, the learner
does not know the true state of the world and tries to infer it based on the
assumption the informant is knowledgeable and known to be helpful, as in
pedagogy. Similarly, in epistemic trust tasks, the learner either knows the
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state of the world and assesses the informant’s behavior against that or the
learner does not know the true state of the world and assesses multiple
informants against each other. In either case, children do not need to predict
an informant’s behavior based on that informant’s false beliefs; informants
either have true beliefs or are uncertain. Thus, there is no necessary reason
why pedagogical or epistemic trust reasoning necessarily depends on false
belief reasoning.

Our approach also differs from previous research modeling aspects of
ToM. Butterfield, Jenkins, Sobel, and Schwertfeger (2009) formalized
certain aspects of ToM using Markov random fields, providing qualitative
arguments that the model can capture effects of uncertainty and reliability
and gaze following abilities. Baker, Saxe, and Tenenbaum (2009) formalize
action understanding as inverse planning and provide evidence based on
adults’ judgments about the goals of animated agents in sprite worlds. Unlike
Butterfield et al. (2009), our approach has been to not only demonstrate
capabilities of our models but to leverage models to provide explanations for
developmental changes in performance. Unlike Baker et al. (2009), our
focus is on learning about the world and others through intentional acts of
communication, as opposed to simple observation.

2.2. Implications
The unified framework covers a wide variety of research and therefore
potentially has broad implications. Here, we focus on the two literatures for
which it has the most obvious implications: broader literature on epistemic
trust and research on deception.

We have focused on the subset of epistemic trust literature which inves-
tigates what informant characteristics children track by manipulating the data
informants produce. There is an extensive literature suggesting that these are
not the only characteristics that children attend to. Children also attend to
perceptual aspects of the stimuli (Corriveau, Harris, et al., 2009), informants’
accents (Kinzler et al., 2011), and others’ nonverbal cues such as bystander
reactions (Fusaro & Harris, 2008). Each of these situations leverages addi-
tionally information that does not simply reduce to reasoning about the
evidence that people provide. Consequently, to model these scenarios would
require additional machinery. For instance, with a model of the relationship
between perceptual similarity and categories (e.g. Anderson, 1991), the
framework could be extended to generate predictions regarding how
perceptual similarity of stimuli interacts with judgments about trust. With
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amodel of the relationship between social groups and accents and a distinction
between different groups of informants, the framework could be extended to
explain the effects of accent on trust. These suggest interesting directions for
future research.

There is also a vast body of work which examines children’s ability
understand and engage in deception. These works cover white lies (Lee &
Talwar, 2002), concealing transgressions (Lewis, Stanger, & Sullivan, 1989;
Talwar & Lee, 2002), deception games (Chandler, Fritz, & Hala, 1989; Hala,
Chandler,&Fritz, 1991;Couillard&Woodward, 1999; Sodian&Frith, 1992),
and deception for self-gain (Peskin, 1992). Our model formalizes two types of
intentions that a communicative agent may have: helpfulness, and what we
have called unhelpfulness. Note that we formalized unhelpfulness as mini-
mizing the learners’ belief in the correct hypothesis. This represents aweak case
of what may be considered deceptiondthe goal is to mislead the learner.

It is interesting to ask whether the modeling framework may be used to
model development of reasoning about deception. A key issue would be
identifying cases which have properties similar to the studies we focused on
when modeling trust: a simple manipulation of helpfulness and knowl-
edgeability. Couillard and Woodward (1999) designed an experiment in
which the informant’s helpfulness was left unknown, but could be learned
from data, which is a similar design to the epistemic trust studies, where
aspects of the informant must be inferred based on the data that they choose.
Mascaro and Sperber (2009) follow a format similar to Couillard and
Woodward (1999). Here children were told beforehand by the experi-
menter, in the liar condition, that the informant was a “big liar” and always
told lies. Clearly, these are cases where our framework could be applied and
used to generate predictions. In the former case, the model would reason
about a knowledgeable informant and infer their intent based on the
outcome of the trials. In the latter case, the model would make predictions
about the outcomes of the trials given the informant’s knowledge and intent
(Shafto et al., 2012). These examples indicate that systematic investigation of
predictions about the development of reasoning about deception is an
important direction for future work.

2.3. Future Directions
The literatures on pedagogical reasoning and epistemic trust stand in contrast
with each other. The literature on pedagogical reasoning seeks to explain how
children could learn so much, so quickly. In order to explain these abilities,
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Csibra and Gergely (2009) and colleagues (see also Tomasello, 1999;
Tomasello, Carpenter, Call, Tanya, &Moll, 2005) have suggested that infants
come prepared to identify and interpret acts of teaching. In contrast, the
literature on epistemic trust notes that not all informants should be trusted and
seeks to explain how children determine who is trustworthy. Thus, while the
pedagogy literature emphasizes the need to assume that informants are
knowledgeable and helpful, the epistemic trust literature emphasizes the need
to assume that informants are not always knowledgeable and helpful.

Confounded with this difference in emphasis is a difference in the ages of
the children studied. The literature on pedagogy seeks to study children as
young as possible [often from 1 year of age and on through school ages
(Gergely, Egyed, & Kir�aly, 2007; Top�al, Gergely, Mikl�osi, Erdohegyi, &
Csibra, 2008)], while the literature on epistemic trust tends to study children
3 years old and up. The differences between these literatures belie the
common developmental questions: what assumptions/abilities are built in
and what is the developmental trajectory of learning from informants.

There are two main possibilities for resolving these differences. First, it
could be that children innately assume informants are knowledgeable and
helpful, and this is gradually unlearned through experience with older
siblings and tricky grandfathers. Or second, it could be that children begin
with weak assumptions about the nature of informants, and their early
pedagogical reasoning and later skepticism are both a consequence of their
changing experiences with informants and beliefs about the world.

A key question for future research is to characterize and test the conse-
quences of each position, a task that computational modeling is uniquely
positioned to facilitate. Our recent research suggests that developmental
changes between 3 and 4 years of age on epistemic trust tasks may be
attributable to changes in expectations about informants (Shafto et al., 2012).
Similarly, computational simulations can be used to ask to what degree can
each hypothesis explain the speed of learning and what kinds of develop-
mental trajectory could we expect from each hypothesis? These represent
important directions for future research and ways in which computational
models and empirical research may mutually inform each other.

3. CONCLUSION

We have presented a unified account of reasoning about learning
from pedagogically sampled data and epistemic trust. We propose that
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these are instances of the broader problem of reasoning about informants’
knowledgeability and intent. We illustrated the workings of our
framework on representative problems from each literature and contrasted
the account provided by our model with theoretical explanations
specific to each domain. We suggest that our approach to modeling chil-
dren’s learning and development points to fruitful avenues for future
research. There is much to be learned about how other people affect
children’s learning and development, but we are confident that continued
integration of computational modeling and empirical methods points
a way forward.

APPENDIX: MODEL SPECIFICATION

Here we describe in detail how the individual components of the
model function and interact. We then describe mathematically how the
model chooses informants.

Helpfulness and Knowledgeability
Learners’ beliefs about helpfulness and knowledgeability can be broken
down into three levels: beliefs about informants in general, beliefs about an
individual informant, and beliefs about an informant on a given trial.
Working from the bottom up, in the model, the informant is knowledge-
able on a given trial with probability qk or PðkÞ ¼ qk. That is,

kwBernoulliðqkÞ; (11.4)

where k describes an informant’s knowledgeability on a particular trial and
qk describes the tendencies of an individual informant.

These tendencies are derived from the learner’s prior beliefs about
informants in general, which follow a Beta distribution with two hyper-
parameters: uniformity, gk˛ð0;NÞ, and bias, bk˛ð0; 1Þ. Uniformity
corresponds to the beliefs that people are uniform in their knowledgeability
(high uniformity, gk/N) or that people tend to have different levels of
knowledgeability (low value, gk/ 0). Bias corresponds to the belief that
people are knowledgeable ðbk/1Þ or not ðbk/0Þ. Putting these pieces
together,

qkwBetaðgkbk;gkð1� bkÞÞ: (11.5)
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Helpfulness is defined similarly to knowledgeability,

hwBernoulliðqhÞ (11.6)

qhwBetaðghbh;ghð1� bhÞÞ: (11.7)

State of the World
The true state of the word is distributed uniform over possible states,

Pðw0Þ ¼ 1

jW j; (11.8)

where jWj is the number of possible states of the world.

Beliefs
Informants’ beliefs are determined by their knowledgeability and the true
state of the world. Informants who are knowledgeable have beliefs corre-
sponding to the true state of the world; naive informants have beliefs
distributed uniformly over all possible states of the world. Formally,

PIðb ¼ w0jkÞ ¼
(
1 if k

1=jW j if naïve:
(11.9)

Actions
The action performed by an informant is dependent on that informant’s
beliefs and helpfulness. Here we must specify the model for two types of
actions: intervention on a causal device (e.g. Fig. 11.1, left) and labeling (e.g.
Fig. 11.1, right). In the case of labeling, a helpful informant will utter the
label corresponding to her beliefs; an unhelpful informant will choose any
label other that the one corresponding to her beliefs. Formally,

Pðljb; hÞ ¼

8
>>>>><

>>>>>:

1 if l ¼ b and h ¼ 1

0 if lsb and h ¼ 1

0 if l ¼ b and h ¼ 0

1=ðjW j � 1Þ if lsb and h ¼ 0

: (11.10)
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In the case of interventions on a causal device, actions are chosen according
to Eqn 11.2. Effects are then determined by the intervention and the
underlying causal structure of the world.

Learning about and Choosing Informants
The studies in section require learners to choose informants for information
(ask trials). As in the studies, we focus here on world learning. The model
chooses informants with probability proportionate to how likely they are to
produce correct labels in the future given their knowledgeability, helpful-
ness, and previous experience, E. To do this, the model must predict the
probability of each informant labeling correctly for each possible true state of
the world, w0˛W . For each informant,

Pðl ¼ w0jk; h;EÞ ¼
X

w0˛W
Pðw0Þ

Z
Pðl ¼ w0jw0; qÞPðqjg; b;EÞdq;

(11.11)

where, for purposes of brevity, q ¼ qh; qk,g ¼ gh;gk, and b ¼ bh; bk.
The integral over q is not analytically solvable. We therefore approximate
using Monte Carlo methods (here, rejection sampling).

The probability in Eqn 11.11 is then normalized over informants. For
example, given two informants a and b, the model chooses to ask informant
a with probability equal to

PðaÞ ¼ Paðl ¼ w0jk; h; dÞ
Paðl ¼ w0jk; h; dÞ þ Pbðl ¼ w0jk; h; dÞ : (11.12)

Results for endorse trials can be similarly captured by taking inferences
summed over informants and normalized over each true state over the world.
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Abstract

Constructivist accounts of learning posit that causal inference is a child-driven
process. Recent interpretations of such accounts also suggest that the process
children use for causal learning is rational: Children interpret and learn from new
evidence in light of their existing beliefs. We argue that such mechanisms are also
driven by informative social cues and suggest ways in which such information
influences both preschoolers’ and infants’ inferences. In doing so, we argue that
a rational constructivist account should not only focus on describing the child’s
internal cognitive mechanisms for learning but also on how social information affects
the process of learning.
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1. INTRODUCTION

Imagine if a child never encountered another sentient being. She
would acquire some pieces of knowledge, mostly about what is directly
observable in the physical world (e.g. concepts of object continuity, solidity,
gravity, support, containment, even if she would have no language to
describe these concepts). It is even possible that she would learn some pieces
of biological knowledge (e.g. knowledge that inanimate objects, even natural
kinds, don’t eat, drink, or breathe, again even if she would have no language
to describe these concepts). But clearly, what she would lack is any knowl-
edge of convention or an understanding of structures that involve hidden or
unobservable events. In general, children do not spontaneously form beliefs
about Santa Claus, angels, germs, Scientology, vitamins, the meaning of
words, and the rules of Chutes and Ladders without input from people. This
is all information learned from others (e.g. Harris & Koenig, 2006).

There is now a long literature on “selective trust”dthe hypothesis that
children are not as overly credulous as was once thought (e.g. Coady, 1992;
Reid, 1764/1970) but that they evaluate the reliability of an informant as
a source of knowledge based on a variety of factors, including their existing
knowledge of people in general (e.g. Jaswal & Neely, 2006; Kinzler,
Corriveau & Harris, 2011) as well as that particular individual’s history of
generating accurate information (e.g. Koenig & Harris, 2005; Pasquini,
Corriveau, Koenig &Harris, 2007). Oneway of thinking about this literature
is that young children use whatever existing causal or conceptual knowledge
they possess to evaluate whether individuals are reliable sources of knowledge
(Koenig & Jaswal, 2011; Sobel & Corriveau, 2010). Indeed, computational
descriptions of selective trust (e.g. Butterfield, Jenkins, Sobel & Schwertfuger,
2009; Eaves & Shafto, in this volume; Shafto, Eaves,Navarro&Perfors, 2012;
Sobel, Buchanan, Butterfield & Jenkins, 2010) have emphasized that the way
children learn from others’ testimony is by rationally integrating their existing
knowledge with the data they observe from others.

The goal of this chapter was to consider the opposite relationdhow
social knowledge affects reasoning and learning about statistical and causal
knowledge, following the idea that most of our knowledge comes from
social interaction (e.g. Bruner, 1990; Vygotsky, 1978). Elsewhere, we have
suggested that infants’ causal learning abilities emerge from their early-
developing sensitivities to statistical relations among physical events (Sobel &
Kirkham, 2007a, 2007b). Here, we will expand that theory and argue that
infants’ and young children’s abilities to learn both statistical and causal
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information are moderated by social information inherent in the
environment.

Our thesis is that there are various ways in which social information from
the environment influences the interaction between the child’s existing
knowledge and the data they observe. In some cases, particularly early in
development, these influences are attentional. Social information guides what
data infants are more likely to pay attention to (e.g. Wu & Kirkham, 2010;
Wu, Gopnik, Richarson & Kirkham, 2011). These cases are particularly
important in infancy when children are faced with the problem of picking out
the appropriate relations in the environment from which to learn. From
a constructivist perspective, knowing what data to attend to in order to learn
information might provide children with critical developmental insights. For
example, 14-month-olds will register any kind of statistical regularity among
object parts and their function, including that the shape of one object’s part
affects the function of another part. Eighteen-month-olds, in contrast, given
the same exposure, will not register this same regularity (Madole & Cohen,
1995). Presumably, what the older children have learned is that this kind of
regularity is not mechanistically plausible (even if they cannot express that
concept linguistically), so it can be ignored.We suggest that social information
provides the foundation for what is worth attending to and what is not crucial
for making ontological commitments.

Later in development, the influence becomes more cognitive.
Preschoolers are better able to focus their attention in a noisy environment,
and thus, social information or presenting information in a social context
allows these older children to interpret data in different ways than would
occur in the absence of or in different contextual environment of that
information. Moreover, such effects are not limited to a particular age
groupdrather, they are dependent on the nature of the task. For instance,
effects of “pedagogy”dmaking inferences based on what others do and say,
but also what they do not do and saydmight be present (e.g. Bonawitz,
Shafto, Gweon et al., 2011) or absent (Sobel & Sommerville, 2009) in
a particular age group (e.g. 4-year-olds) or might be present in very young
children (e.g. Gweon, Tenenbaum & Schulz, 2010), depending on the
nature of the task. Collectively, as children come to understand how to focus
attention in a complex environment, social cues can provide them with
information beyond what they directly observe; this information can then be
used for statistical and causal learning.

The plan of this chapter is as follows: We will first describe three lines of
research. Line 1 describes statistical learning capacities in infants, which are
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potentially useful in learning pieces of physical knowledge (e.g. about the
composition of objects from component features). Within this line, we will
describe particular effects of social information on these learning mechanisms
as well as the developmental trajectory of these effects. The goal here is to
outline how social information initially focuses children’s attention in
a distraction-filled environment. Line 2 will then describe how various ways
social information influences preschoolers’ causal inferences. In this case, the
focus will predominantly be on how social cues are not focusing attention,
but rather providing children with additional information beyond the data
presented. Line 3 will then examine a case in which children’s ability to
make rational inferences differs across the physical and social domain. Again,
a critical point is that there is not a point in development in which rational
inference emergesdrather, children are potentially capable of such infer-
ences at very young ages but are potentially limited by information pro-
cessing capacities or by what existing knowledge they possess at a given
point in time. Finally, we will end with two discussion pointsdone about
the nature of rationality and one about the relation between natural peda-
gogy (or social cues more generally) and children’s causal inference.

2. SOCIAL INFLUENCES ON INFANTS’ STATISTICAL
LEARNING

Over the past two decades, it has become evident that infants and young
children have access to a powerful domain-general learning device, which
allows for quick learning of statistically defined (or probabilistic) patterns in
both the auditory and visual domain (e.g. Fiser & Aslin, 2002; Kirkham,
Slemmer & Johnson, 2002; Kirkham, Slemmer, Richardson & Johnson,
2007; Saffran, Aslin & Newport, 1996; Thiessen, 2011). For example, 9-
month-old infants prefer to look at shapes that previously predictably co-
occurred, rather than at shapes that did not co-occur in a predictable manner
(Fiser & Aslin, 2002). Infants can then use statistical regularities inherent in
the environment to identify what to learn and to make further inferences.
Several developmental skills, such as object recognition (e.g. Biederman,
1987), categorization (e.g. Mareschal, Quinn & French, 2002; Rakison &
Butterworth, 1998; Schyns & Rodet, 1997; Younger & Cohen, 1986), and
word learning (e.g. Estes, Evans, Alibali & Saffran, 2007), benefit from
learning the statistical regularities of visual and auditory features. For
instance, during word learning, infants group co-occurring phonemes into
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words (Saffran et al., 1996) and then attach those newly segmented words to
objects (Estes et al., 2007).

Even if infants can learn from the regularity with which events co-occur,
the natural environment often presents infants with multiple simultaneous co-
occurrences. How do infants knowwhich regularities to attend to, learn from,
and maintain for use in further tasks? Social cues are one of the ways in which
infants may have their attention directed to the appropriate information.

Infants seem well prepared to be supported by such cues. By the first few
months of life, infants engage in joint attention (Butterworth, 2004) elicited
by eye gaze, infant-directed speech, initial eye contact, head turn, and
gestures (Carpenter, Nagell & Tomasello, 1998; Senju & Csibra, 2008).
Many investigators have suggested that this attentional bias helps infants
develop their social cognition and competence (e.g. understanding beliefs,
desires, goals, and communicative intent; see e.g. Carpenter et al., 1998;
Csibra & Gergely, 2006; Kushnir, Xu & Wellman, 2010; Repacholi &
Gopnik, 1997). However, these cues also can shape cognitive development
by helping infants learn what to learn in a distraction-filled environment.
The concept of “natural pedagogy” (cf. Csibra & Gergely, 2009) suggests
that infants are prepared to accept social information by showing an early-
developing sensitivity to ostensive signals and contexts. In other words,
young infants might be capable of understanding that a social cue has
a communicative intent and therefore is of immediate importance.

Along these lines, Wu and Kirkham (2010) found that 8-month-olds
were better able to learn regularity among audiovisual events when those
events were cued by social cues (i.e. a dynamic turning face that used direct
eye contact, followed by a head turn and infant-directed speech) than
nonsocial cues (i.e. flashing squares that shift attention to the target location).
This deeper learning occurred, even though there was no difference in
looking time during familiarization between the two conditions, which
suggests that the social cue offered more than just a direction of attention but
also an idea of intentional communication.

Social cues can also impact how infants use statistical regularity to make
deeper cognitive inferences, such as object segmentation. Wu et al. (2011)
familiarized 8-month-olds with a series of statistically defined objects, con-
sisting of three parts: Two of the parts always co-occurred, while the third
part changed in each presentation. During test trials, the objects would split
apart, with one part drifting away, leaving two remaining together; the split
was either consistent with the co-occurrences (i.e. the part that changed
during presentations would split off) or inconsistent (i.e. the split would occur
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between the parts that always stayed together; see Fig. 12.1). In other words,
if the infants had been following the relations between the parts, they would
learn that the changing part was more likely to split off. Importantly, these
objects were not alone on the screendduring familiarization and during test,
there were distracting objects that were equally as interesting, but which had
completely different internal correlations. Therefore, in order to perform
well on test trials that measured learning of the target correlations, the infant
had to attend to the appropriate objects. A social cue (again a turning face,
using infant-directed speech) focused infants’ attention on the cued target
pattern during familiarization, and infants were capable of learning the
correlations and showed longer looking time to the inconsistent splits,
a violation of expectation result. Without the social cue, even in absence of
the competing event during familiarization, infants were not capable of
learning the correct co-occurrences. Taken together, this suggests that social
cues not only support direction of attention but also quality of learning.

Figure 12.1 Schematic representation of Wu et al. (2011) procedure.
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Although this is only the beginning of work looking at the relation
between social cueing and statistical learning, there is already some
suggestion of a developmental trajectory. We know that the ability to detect
gaze direction forms the backbone of joint attention and develops quickly
over the first 4 months of life (e.g. Vecera & Johnson, 1995). Studies using an
adapted Posner cueing paradigm have found facilitated target detection from
gaze direction with a computerized face in 3-month-olds (Hood, Willen &
Driver, 1998) and more recently in newborns (Farroni, Massaccesi, Pividori,
Simion & Johnson, 2004). By 3–4 months of age, infants can follow
a “looker” to a target and do so reliably by 5–6 months of age under simple
ideal conditions (Butterworth, 2004; Flom & Pick, 2007; Poulin-Dubois,
Demke & Olineck, 2007; Senju & Csibra, 2008; Striano & Reid, 2006). All
these data suggest sensitivity to ostensive cueing early in infancy, but there
has not been much work addressing when these cues begin to support
learning in a way that is qualitatively different from less social cues. Inter-
estingly, using the same social cueing paradigm, Wu and Kirkham (2010)
found that 4-month-olds were capable of following the face cue to the
correct audiovisual event but did not benefit from this cue. They showed
identical performance to the 8-month-olds in the nonsocial cueing condition.
In other words, 4-month-olds were successfully directed by the cue, but the
quality of learning was not enhanced. These preliminary data suggest that
infants might have to “learn to learn” from social cues, in the same way as
they do with other ostensive cues (e.g. arrows; Kingstone, Smilek, Ristic,
Friesen & Eastwood, 2003; Varga et al., 2009).

In sum, we would like to suggest that infants have an early-developing,
robust capacity for picking up on the statistical structure within multimodal,
complex events and that this capacity supports infants’ representation of their
world. Importantly, social cueing may provide a parameter within which
infants can focus their attention on the appropriate structures.

3. A NOTE ABOUT THE RELATION BETWEEN
STATISTICAL AND CAUSAL LEARNING

None of the ideas presented in the previous section, however, are specifi-
cally about children’s ability to learn novel pieces of causal information or
make causal inferences about novel systems. Describing how children
engage in causal learning and inference brings up a particular problem.
While some causal relations are directly perceivable (e.g. Michotte’s billiard
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balls), most causal knowledge is not. Statistical regularity offers a good
starting point. Knowing that a particular causal relation exists suggests that
certain regularities will occur; if event X causes event Y, then the occurrence
of X will make the occurrence of Y more likely (all other things being
equal). Similarly, observing such regularity offers insight into causal struc-
ture. If Y is more likely in the presence of X than in its absence, we might
believe that X causes Y. Indeed, some adult experiments on causal learning
suggest that such probabilistic reasoning might be considered a normative
model of causal inference (Allan, 1980; Shanks, 1995).

Statistical regularity does not always indicate causality. Any case in which
the dependence relation between two events (X and Y) switches, given the
presence or absence of a third (Z) suggests a causal structure in which a direct
causal relation does not exist between them (e.g. X/Z/Y). To learn
causal structures, children must have a mechanism for recognizing statistical
regularities among events, but also parsing out conditional independence
and dependence relations.

Several researchers have suggested that by the second half of the first year
of life, infants make complex causal inferences in which they resolve their
perception of ambiguous events in terms of mechanistic or intentional
causality (e.g. Kosugi, Ishida & Fujita, 2003; Muentener & Carey, 2010;
Saxe, Tenenbaum & Carey, 2005; Teglas et al., 2011). Similarly, 8-month-
olds appear capable of intuitive statistical reasoning, relating the samples they
observe to the population of objects from which those samples were taken
(e.g. Xu & Garcia, 2008). These findings, however, tend to be mostly
limited to infants in the second half of the first year of life. This leaves open
the possibility that a more sophisticated system for causal inference emerges
from statistical learning mechanisms. Cohen and colleagues (Cohen &
Amsel, 1998; Cohen & Oakes, 1993; Oakes, 1994; Oakes & Cohen, 1990)
have suggested that the perception of simple causal relations develops
between approximately ages 5–10 months. More relevant to the present
discussion, Sobel and Kirkham (2006, 2007a, 2007b) found that children’s
ability to recognize conditional independence and dependence in statistical
regularity developed between the ages of 5 and 8 months. They hypothe-
sized that a mechanism for causal learning emerged from children’s statistical
learning capacities. This would be consistent with infants’ developing
statistical reasoning capacities: Denison, Reed, and Xu (in press) found that
6-month-olds, but not 4.5-month-olds, registered the relation between the
distribution of a sample and the population from which it came (similar to
Xu & Garcia’s findings on 8-month-olds). We take this finding as evidence
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in favor of a developing mechanism for causal inference that goes beyond
registering mere statistical regularity among events (although other inter-
pretations are possible).

In the rest of this chapter, we will focus on research on older children.
We suggest, however, that this discussion leads to a particularly important
open question that must be addressed: How does social information influ-
ences the emergence of a causal reasoning system in very young children?
We think that there is little data to address this particularly important
question, but one that should motivate future investigations.

4. INFLUENCES OF SOCIAL INFORMATION ON
PRESCHOOLERS’ CAUSAL INFERENCES

By the age of 4, children have the ability to make relatively sophisticated
causal inferences (e.g. Bullock, Gelman & Baillargeon, 1982; Gopnik, Sobel,
Schulz & Glymour, 2001; Schulz & Gopnik, 2004; Schulz & Sommerville,
2006; Sobel, Tenenbaum & Gopnik, 2004). That said, children’s causal
inference capacities have not developed completely. In some cases, what’s
still developing is appreciation of specific kinds of causal mechanisms, like
those that act at a distance (e.g. Kushnir & Gopnik, 2007; Sobel &
Buchanan, 2009; see also Shultz, 1982, Experiment 2). In other cases, what’s
developing is more domain-general, like the explicit role of probabilistic
information in causal inferences or children’s capacity to integrate a set of
causal relations together to form a causal structure. In this section, we
examine how social information might influence children’s developing
capacities to engage in these inferences.

4.1. Understanding Probabilistic Information
Many investigations of preschoolers’ reasoning suggest that they have
difficulty with explicit probabilistic concepts (e.g. Davies, 1965; Hoemann
& Ross, 1982; Piaget & Inhelder, 1975; Schlottman, 2001). Piaget and
Inhelder (1975), for example, showed that 3–7-year-olds’ choices on various
probabilistic tasks were arbitrary and that it was not until the concrete
operational stage that children could differentiate between deterministic and
probabilistic relations. They suggested that preoperational children only
focused on surface associations, like magnitude estimations. Similarly,
Hoemann and Ross (1971) presented 4- through 10-year-old children with
spinners, divided into different areas of black and white. In their critical
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“probability” condition, they showed children a spinner and asked them to
predict the color where the pointer would land. Children younger than 6
years chose colors randomly; older children demonstrated an emerging
understanding of probability. Follow-up experiments led them to conclude
that 3–5-year-olds do not have even “a glimmer of probability under-
standing” (Hoemann & Ross, 1982, p. 116).

However, other investigations have found that 4- and 5-year-olds have
some understanding of probability (e.g. Beck, Robinson, Carroll & Apperly,
2006; Fischbein, 1975; Kushnir & Gopnik, 2005; Kuzmak & Gelman, 1986,
Perner, 1979). For instance, Perner (1979) found that 4–5-year-olds could
reason appropriately about probabilistic contrasts when they were quite large
(where one event was likely 7/8th of the time and the other would occur 1/
8th of the time). Furthermore, 4- and 5-year-olds’ inferences overall
improved over the course of his experiments, suggesting that this under-
standing was not completely impenetrable. Kushnir and Gopnik (2005)
showed that 4-year-olds could make some explicit probability judgments
from observational data, again when the contrasts were relatively highdfor
instance, when shown that one object always activated a machine and
another object activated a machine one out of three times, children chose
the first object as more likely to activate the machine.1

Sobel, Sommerville, Travers, Blumenthal, and Stoddard (2009) exam-
ined how children engaged in category-based induction of causal properties
given probabilistic data. They introduced 3-, 4-, and 5-year-olds to a novel
machine that lit up and played music when objects were put on it and
showed children two sets of three identical objects. In their baseline
experiment, on deterministic trials, all members of one set of objects activated
the machine, while no member of the other set did so. Children then saw
novel members of each set and were asked to pick which object was the best
choice to make the machine go. Unsurprisingly, children in all age groups
chose the object that was identical to the efficacious set. The more inter-
esting case was when the data were probabilistic. On these trials, children
observed that two members of one set of three activated the machine (while

1 They also found in some (but not all) cases that 4-year-olds reliably chose an object that
activated the machine two out of three times over one that activated the machine one out
of three times. As shown in the paragraphs below, however, we could not replicate this
finding using a slightly different method. Whether our failure to replicate resulted from
our methodological difference or children’s explicit probabilistic reasoning capacities is an
open question.

330 David M. Sobel and Natasha Z. Kirkham



the third did not) and one member of the other set of three activated the
machine (while the other two did not). Children were asked the same test
questiondnew members of each set were brought out and children were
asked to pick the best one to make the machine go. Three- and 4-year-olds
chose randomly; only the 5-year-olds picked the object from the set with
two out of three efficacious members over the set with one out of three
efficacious members reliably above chance.

Can social information help children’s probabilistic inferences? Sobel
et al. (2009) presented a new group of 3- and 4-year-olds with the same
kinds of probabilistic data, but in addition to the information about each
objects’ efficacy, children observed the experimenter react to those data. For
the set with two efficacious objects, the experimenter acted positively when
the two objects made the machine go and exclaimed how strange it was
that the one object that failed to activate the machine did so. For the set with
only one efficacious object, the reactions were reversed; the experimenter
thought the one object that activated the machine was strange while his
reaction to the two that failed to activate the machine was approving. The
hypothesis was that if children observed that the experimenter believed the
data should have been deterministic, they would be more likely to treat it in
that manner. This was not the case, and the overall choices that children
made in this condition were no different from chance (i.e. exactly half of the
time they chose the object from the set with two efficacious objects and half
of the time they chose the object from the set with only one).

However, in order to appreciate the role of the experimenter’s expec-
tations, children must recognize that those expectations are in conflict with
the actual observed data. That is, only children who recognize that the
experimenter’s beliefs about these data could possibly be inconsistent with
the actual state of the world should be able to integrate those beliefs into
a judgment of efficacy. As a simple measure for this possibility, all children
were given a standard unexpected contents (based on Gopnik & Astington,
1988) false belief measure. When responses on the test question were
considered as a function of performance on this measure, the children who
showed a reliable understanding of others’ false beliefs chose the novel
object from the set with two efficacious objects ~70% of the time, reliable
above chance and more than the children who did not show this under-
standing (who made this response only ~40% of the time).

The conclusion here is relatively simpledthat children can go beyond
the observed data and integrate another’s expectations about what infor-
mation is presented in order to make a causal inference. In this case,
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however, the social information necessary involves appreciating that what
they actually observe is in conflict with those expectations. Hence, it is
possible that an explicit understanding of another possessing a false belief
might be necessary.

4.2. “Natural Pedagogy” Revisited
One could argue that in the previous example, the social information
provided to children presented a test of their cognitive resourcesdthey had
to integrate the experimenter’s expectations with the actual data and could
only do so if they understood how to resolve the difference between those
two pieces of information. Research on “natural pedagogy” (Csibra &
Gergeley, 2009), in contrast, focuses on infants’ and toddlers’ capacities to
learn from the intentional actions of others as they attempt to communicate
or teach the child some piece of information (although it is also the case that
toddlers appear capable of making inferences about statistical structure based
on such pedagogical information, see Gweon et al., 2010; Yang, Bushnell,
Buchanan & Sobel, 2012).

Assumptions about how others teach information are present in older
children as well. Bonawitz, Shafto, Gweon et al. (2011) showed that 4–6-
year-olds were sensitive to a teacher’s intentions when demonstrating the
function of a novel causal system. Children were introduced to an apparatus
that afforded four nonobvious causal relations. In one condition, the teacher
intentionally demonstrated one of the causal relations to the child. In the
other conditions, the teacher engaged in a nonpedagogical demonstration,
by (1) discovering that same function accidentally, (2) demonstrating that
function, but then interrupting the demonstration session, or (3) doing
nothing (a baseline condition). Children were more likely to replicate the
demonstrated action in the first case but less likely to discover the other
causal properties. In contrast, they were more likely to explore the apparatus
and discover those properties in the latter cases but imitated the demon-
strated function less frequently.

What’s interesting about these effects is the ubiquitous nature of these
pedagogical demonstrations. Unlike the previous example, where only
children who could interpret the conflict between their mental state
knowledge and the observe data used that social information, children in
these experiments seem to evaluate any interaction between themselves and
an agent in terms of the pedagogical cues (indeed Bonawitz, Shafto, Gweon
et al., 2011 showed that children made these inferences even in indirect
settings, where the demonstration was ostensibly to another child).

332 David M. Sobel and Natasha Z. Kirkham



This stands somewhat in contrast to data from our laboratories. Sobel and
Sommerville (2009) presented 4-year-olds with a lightbox (shown in
Fig. 12.2). The box had four buttons on it, color coded to four lights (red,
yellow, blue, and green). Children played a game with the experimenter
where they were first introduced to the box as a puzzle box in which lights
could activate each other deterministically. For instance, if red activated
blue, then pressing the red button would activate the red and blue lights
simultaneously, but pressing the blue button would just activate the blue
light. Children observed the experimenter’s steps and then through several
of these puzzles (a button on the side of the box “changed” the puzzle. It was
pressed in between each example).

At test, children observed the experimenter demonstrate ambiguous data
to the child. The experimenter pressed the blue button, which made the
blue (B), green (G), and yellow (Y) lights activate. He then pressed the
yellow light, which made only the yellow light activate. At this point, he
explained that he was confused about how the lights caused one another and
that it could be that blue caused green and yellow directly (a common cause
model in which G)B/Y) or that blue caused green and green caused
yellow (a chain model in which B/G/Y). At this point, the experimenter
presented a datum that disambiguated these modelsdhe brought out
a cover, which had previously been established to effectively remove a light’s
effects from the box and covered the green light while activating the blue
button. This produced either only the blue light (indicating a chain model)
or both the blue and yellow lights (indicating a common cause model).
Right before he activated the blue button, the experimenter offered one of
three rationales for his actions. He either said that he was performing these

Figure 12.2 Lightbox used in Sobel and Sommerville (2009, 2010).
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actions “so we can see what happens when we press the blue button without
the green light” (the appropriate rationale condition) or “because I don’t like
the green light that much, and we can press the blue button because I
think the blue light is pretty” (the inappropriate rationale condition) or offered
no rationale for these actions (baseline). After this demonstration, children
were shown pictorial representations of the appropriate chain and common
cause models, and they were asked to point to the one they thought was
how the lights were connected (i.e. the appropriate solution to the puzzle).

Consistent with the findings on children appreciating the pedagogical
nature of demonstrated material, 4-year-olds accurately evaluated the data
(i.e. they chose the correct causal model) in the appropriate rationale
condition 70% of the time, significantly above chance and more than both
the baseline and the inappropriate rationale condition, in which they only
evaluated the data and selected the appropriate causal model 50% and 40% of
the time, respectively. Critically, performance in this inappropriate rationale
was not significantly different from the baseline condition, and both were
not different from chance.

Performance in the baseline condition is critical here. If children are
constantly evaluating the pedagogical nature of their interactions with
others, then one might expect the difference between the appropriate and
inappropriate rationale conditions, but that the baseline condition would
be more like the appropriate rationale condition than the inappropriate
one. Of course, there are critical differences between these results and the
ones presented by Bonawitz, Shafto, Gweon et al. (2011). We did not
offer children the opportunity to engage in exploratory play with the
lightbox nor did we use a measure in which children had to imitate
observed causal relations. Instead, our dependent measure was how well
children could reconstruct a representation of the causal relations they
observed. It is quite possible that there are fundamental differences
between how children behave in a free play setting, given pedagogical
information, and how they would respond to direct questions about the
nature of the causal structure.

In particular, free play might afford children the opportunity to resolve
ambiguous information. Indeed, Schulz and Bonawitz (2007) found that
preschoolers play more with a toy when its causal efficacy is ambiguous than
when they are shown unconfounded evidence about what the toy does.
Similarly, Cook, Goodman, and Schulz (2011) showed that children
explored novel objects more when their causal efficacy was known to be
stochastic as opposed to deterministic. In stochastic cases, children do not
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know whether any particular objects are efficacious, which makes engaging
in novel behaviors on the objects to discover potential hidden efficacy
rational. Critically, children are doing this on their own (i.e. unprompted),
and Cook et al. conclude that this proclivity for discovery might be part of
a rational system for exploration.

4.3. Learning from Action versus Observation
We have tried to test out the importance of such discovery in causal learning
for young children. In the adult literature, there is a large amount of
evidence that we learn better from acting on a causal system than just
observing it function (e.g. Lagnado & Sloman, 2004; Steyvers, Tenenbaum,
Wagenmakers & Blum, 2003). But why might acting on the environment
produce more accurate causal learning than merely observing data? Acting
provides a learner with conditional probability information (e.g. in the
lightbox example above, knowing whether blue activates yellow in the
absence of green allows the child to discern between the common cause and
chain models). Young children can recognize such conditional probability
information from observing intervention data (e.g. Gopnik et al., 2001;
Schulz & Gopnik, 2004; Sobel & Kirkham, 2006). Acting also provides
anticipatory information: When you observe results based on your actions,
those actions should be considered a cause of any subsequent or concurrent
event. Lagnado and Sloman (2004) demonstrated that adults are sensitive to
this anticipatory information (even over conditional probability informa-
tion). Infants have little trouble anticipating events (e.g. Haith, 1993), and
such anticipation can indicate their understanding of statistical regularities,
including some that are critical to causal inference (e.g. Johnson, Amso &
Slemmer, 2003; Sobel & Kirkham, 2006).

But critically, actions also allow children to be active in the learning
processdthey must decide what to do, and this decision process might
influence how they act and how they learn from those actions. Adults and
elementary school children learn causal structures more accurately from
observing the results of their own actions than from observing another
learner who generate the same data (e.g. Kuhn & Ho, 1980; Lagnado &
Sloman, 2004; Sobel & Kushnir, 2006). Preschoolers show similar effects
(e.g. Fireman, Kose & Solomon, 2003; Kushnir & Gopnik, 2005; Kushnir,
Wellman & Gelman, 2008). Even infants, who clearly learn from imitation
(e.g. Meltzoff, 1988), register the importance of their own actions when
recognizing causal structure from the environment (e.g. Sommerville &
Woodward, 2005; Sommerville, Woodward & Needham, 2005).
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The trouble is, in free play settings that are dedicated to causal learning,
that there is rarely much structure to children’s actions. For instance, Schulz,
Gopnik, and Glymour (2007) presented children with a gearbox toy that
could afford one of four causal structures. In their critical experiment, 4–5-
year-olds were allowed to play with the toy in order to learn the structure.
They found that children who generated all of the relevant conditional
probability information necessary to isolate the particular causal structure
that governed how the gears worked were better able at reconstructing that
causal structure, but, for instance, when the model was a chain, children only
responded at 39% accuracy (above chance, but with much room to
improve).

In this experiment, however, children were not simply given the toy to
play withdthey were introduced to it and its structure, and critically,
observed the experimenter generating interventions on it, in order to
demonstrate its efficacy and the problem at hand. This demonstration might
have eliminated a potential critical piece of information inherent in the
ability to act on an environment: discovery. In educational settings, Bruner
(1961) emphasized that students who discover information for themselves
were more motivated to achieve goals and more likely to remember
information.

Sobel and Sommerville (2010) tried to translate that idea to a causal
learning environment by again using the lightbox paradigm, which afforded
many possible different learning puzzles. We introduced children to the basic
workings of the box and then set the puzzle up differently for them each time.
Critically, children were asked to learn these puzzles in one of three condi-
tions: a discovery condition, in which they were allowed to press the buttons
and activate the lights first, and then at the conclusion of their free play,
watched the experimenter press each button and narrate the results; a confir-
mation condition, in which the order of this procedure was reverseddchil-
dren watched the experimenter act first and then their actions merely
produced the same results as the experimenter’s; and a baseline condition, in
which children only watched the experimenter and were not allowed to act
on the box at all. Children were then asked a set of causal structure questions
to see whether they had learned what model we presented.

The results are shown in Fig. 12.3. Across a variety of models (including
a chain model, which children in Schulz et al.’s [2007] procedure found
difficult), performance was above chance in all of the conditions. However,
there was a clear advantage to children in the discovery condition over those
in the confirmation or baseline conditions, which did not differ from one
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another. This latter finding again is relatively important: Children whose
actions exploit what another does, as opposed to discovers efficacy on their
own showed no benefit to acting on the causal system than children who
simply observed another act. Actions that discover efficacy, in contrast,
benefited the child’s ability to learn the structure.

4.4. Interim Conclusions
We have presented three cases in which social information, in the form of
others’ expectations, rationales, and actions provide information that
changes how young children are able to learn causal structures or make
causal inferences. In the first case, children must be aware of the importance
of the social informationdthe contrast between the experimenter’s belief
state and the actual datadto use that information for inference.

In the latter cases, however, we would suspect that the influence of the
social information is more ubiquitous. Appropriate rationales benefit chil-
dren learning because they potentially set the stage for children to appreciate
the pedagogical information inherent in others’ actions. Similarly, the child’s
own actions that discover information promote better learning than cases in
which children only exploit the function of a causal system that they have
already observed. One critical difference is that unlike other findings on
children’s learning from pedagogy (e.g. Bonawitz, Shafto, Gweon et al.,
2011), our baseline condition did not afford the same learning. One
explanation for this might be that children must first be put into a mindset to

Figure 12.3 Results of Sobel and Sommerville (2010) learning procedure contrasting
discovery with confirmatory learning. For color version of this figure, the reader is
referred to the online version of this book.
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learn. For instance, in the baseline condition of Sobel and Sommerville
(2009), the absence of any explanation for the experimenter’s actions might
lead children to believe that they are not being shown this information as
a demonstration that would afford learning any novel information. After all,
children are simply being shown lights activate on a boxdthere is not much
at stake. In contrast, Bonawitz et al.’s display is much larger and holds the
potential for many more discoveries. A critical open question is whether
some overall mindset that the social interaction is in an environment
specifically for learning must be present in order to see children use inten-
tional or pedagogical information.2 Younger children might potentially
believe that all interactions afford such learning opportunities (which would
be consistent with Csibra and Gergeley’s “natural pedagogy” as well as
findings on pedagogical inferences seen in infants, see e.g. Gweon et al.,
2010; Yang, Bushnell, Buchanan & Sobel, submitted for publication). Older
children might need these environmental cues. This is an important question
for future investigations.

5. RATIONAL CAUSAL INFERENCES IN THE PHYSICAL
AND SOCIAL DOMAINS

The final example we present more directly tests children’s inferences as
rational, by considering whether they integrate their existing knowledge
with the data they observe to make inferences. Inspired by Bayesian models
(Tenenbaum & Griffiths, 2003), Sobel et al. (2004) introduced 3- and 4-
year-olds to a machine that lit up and played music when certain objects
were placed on it. They instructed children that objects that activated the
machine were called “blickets” objects that did not activate the machine
were “not blickets.” Their goal was to examine how manipulating the base
rate of blickets affected how children reasoned about ambiguous evidence.
Children observed a set of identical blocks and that of the first 12 blocks
placed on the machine, either 2 or 10 activated it. Children next saw a test
trial in which two new (but still perceptually identical) blocks (A and B)
activated the machine together, followed by object A activating the machine
by itself. Children were asked whether each was a blicket.

All children categorized object A as a blicket, but the causal status of B is
uncertain. A Bayesian model predicts that the probability that B is a blicket is

2 We are indebted to Kathy Hirsh-Pasek for pointing out this possibility.

338 David M. Sobel and Natasha Z. Kirkham



equivalent to the base rate of blickets and critically that children should be
more likely to categorize object B as a blicket in the common than the rare
condition (see Griffiths, Sobel, Tenenbaum & Gopnik, 2011 for a detailed
description of this model). This is how 4-year-olds responded: they cate-
gorized object B as a blicket ~80% of the time in the common condition and
~20% of the time in the rare condition. Three-year-olds, however, were
unaffected by the base rate and categorized B as a blicket ~80% of the time in
both conditions. Adults, incidentally, respond similarly to 4-year-olds, and
4-year-olds make other inferences about ambiguous evidence by appealing
to base rate information (Griffiths et al., 2011).

It is tempting to conclude that rational causal inference develops during
the preschool years, but it is equally possible that 3-year-olds are perfectly
rational in this experiment. A strength of the blicket detector paradigm is
that researchers can control the amount of prior knowledge children bring
to the testing environment. The detector and label “blicket” are obviously
novel; as a result, the familiarization should be an adequate reflection (to the
child) of the base rate of blickets. However, the machine is physically
instantiated and thus must conform to certain causal laws, such as temporal
priority and spatial independence. Understanding these concepts, which
appear to be in place by the time children are three (e.g. Bullock et al., 1982;
Sophian & Huber, 1984) means that children should recognize that objects
placed on the machine make it activate and that activation does not cause the
experimenter to place an object on the machine. Similarly, children should
recognize that one object being a blicket does not cause another object to be
a blicket. While these facts might seem trivial, they constrain what
hypotheses one considers as an explanation for the machine’s activation.

Also critical is an understanding of the relation “blickets” have to hold
with the blicket machine. The data children observe are only ambiguous if
children believe that there is a deterministic relation between an object
being a blicket and it activating the machine (what Tenenbaum & Griffiths,
2003, called the activation law). Without this, the test trial is more consistent
with object B being a blicket than the base ratedeven though object A is
a blicket, it might have failed to be efficacious when A and B were presented
together. Critically, this argument does not imply that 3-year-olds are
indeterminists (in fact there is good evidence that they are not, see e.g.
Kuzmak & Gelman, 1986). Rather, the argument is that 3- and 4-year-olds
potentially have different mechanistic understanding about the relation
between blickets and blicket machines. Indeed, 4-year-olds, but not 3-year-
olds, recognize that an object that can activate the machine has a stable
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mechanism by which a blicket causes the detector to activate (Sobel,
Yoachim, Gopnik, Meltzoff & Blumenthal, 2007). It is doubtful that 4-year-
olds know what the nature of that mechanism is (indeed, it is doubtful that
adults would know the nature of that mechanism, see Rozenblit & Keil,
2002), but it is likely that 3- and 4-year-olds bring different mechanistic
knowledge to interpreting the blicket machine environment.

Is it possible that this different (and developing) knowledge allows
children to recognize the inherent ambiguity in the rare common manip-
ulation described above? That is, if 3-year-olds could be made aware of the
relation between objects’ causal properties and another stable nonobvious
property, would they interpret the data they see as ambiguous and rely on
the base rate information inherent in the procedure? Sobel and Munro
(2009) presented 3-year-olds with Mr. Blicket (see Fig. 12.4): a blicket
detector with cardboard eyes on top, which spontaneously activated
contingent on the experimenter’s voice (such that Mr. Blicket and the
experimenter could converse, akin to a manipulation used by Johnson,
Slaughter & Carey, 1998). After talking with Mr. Blicket, the experimenter
told children that Mr. Blicket would tell them what objects he likes.
Drawing from the theory of mind literature, by the age of 3, most children
recognize that their own desires can be different from others’ (Repacholi &
Gopnik, 1997), that fulfilled and unfulfilled desires have causal consequences
(Wellman & Woolley, 1990), and that shared preferences for objects relate
to nonobvious properties of those objects (Fawcett & Markson, 2010;
Kushnir et al., 2010). These data suggest that 3-year-olds might understand
that Mr. Blicket’s wants particular objects for some reason, which is stable in
the context of the experiment.

Figure 12.4 The Mr. Blicket stimulus used in Sobel and Munro (2009).
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Using Mr. Blicket’s desires, instead of a blicket machine, 3-year-olds
showed the same kind of understanding of stable internal properties as in
Sobel et al. (2007). Moreover, and more importantly, when we replicated
the base rate experiment, in which Mr. Blicket was first shown to like either
few or many things (2 or 10 of the first 12 identical blocks in a box, the rare
and common conditions, respectively), and then that he liked objects A and B
together and object A by itself, all children stated that he liked object A.
Critically, 93% of 3-year-olds in the common condition stated he liked
object B compared to the 44% who said so in the rare condition.

Three controls were critical. First, we wanted to ensure that children
were not relying on the spontaneous activation of the detector, but rather
understood that there was a difference between the causal relations indicated
by Mr. Blicket’s desire toward an object and an object making the blicket
machine activate. Another group of 3-year-olds were introduced to
a spontaneously activating blicket machine. These children categorized
object B as having efficacy 72% of the time in the rare condition, signifi-
cantly more often than children in the Mr. Blicket desire condition. This
suggests that when the same data are presented as a machine activating,
children respond associatively, and do not use the base rate information.

Second, we wanted to ensure that children did not simply find Mr.
Blicket more interesting and thus brought more cognitive resources to the
task. Another group of 3-year-olds were introduced to Mr. Blicket in the
same manner and shown that activation was rare, except that they were told
that Mr. Blicket’s activation indicated that he was “thinking about” an
objectda mental state 3-year-olds struggle to understand (e.g. Flavell,
Green & Flavell, 1995; Wellman, Cross &Watson, 2001). Again, 72% of the
children stated object B had efficacy, significantly more often than children
in the desire condition.

Finally, we also wanted to ensure that 3-year-olds were not confused
when asked to relate Mr. Blicket’s activation with his thoughts as opposed to
his preferences. Children might believe that desires are based on stable
dispositions, while thoughts are more fleeting (e.g. Eisbach, 2004). Thus,
another group of 3-year-olds were told that Mr. B (we didn’t call him Mr.
Blicket in this case to avoid confusion) knew which of the objects were
“blickets” and his activation indicated that a blicket was on him (i.e. he acted
like a blicket machine). Given 3-year-olds struggles understanding knowl-
edge as a mental state (again, compared to desire, e.g. Gopnik & Slaughter,
1991), we predicted that children would not use the base rate information.
They did not, categorizing object B as a blicket 80% of the time.
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In each of these controls cases, we hypothesized that 3-year-olds would
be less likely register the relation between a stable property of the objects and
those objects’ efficacy (i.e. whether they activated the spontaneously acti-
vating machine or Mr. Blicket/Mr. B agent). However, a critical prediction
of this account is that small subset of 3-year-olds that do register these
relations would be sensitive to the base rate manipulation. To examine this,
we performed a posttest on children in the rare condition of the Mr. Blicket
desires procedure, and the three of the control procedures just described. In
this posttest, we measured how much children knew about the relation
between the particular causal relation that was presented and whether it
related to a stable property of the objects. Across the conditions, the higher
the percentage of responses in which the child related the internal properties
of the objects to their causal properties, the more likely children were to
respond consistently with the base rate. What knowledge children brought
to the environment about the particular pieces of social knowledge under
consideration (desire, thought, knowledge, etc.) influenced how children
resolved the ambiguous information. Critically, if they recognized that the
particular social relation indicated a stable feature, they acted in accord with
the rational (in this case, a Bayesian) model.

6. CONCLUDING THOUGHTS

6.1. Theory and Models
In thinking about describing children’s causal inferences as rational, partic-
ularly in relation to social information, we had reason to be influenced by
sociological ideas proposed byWeber (1962/1925). Weber made two points
about the definition of rational behavior that we believe apply to
a psychological description of rationality, and particularly to how children’s
causal inference can be thought of as rational.

The first is that social behavior comes in many forms and that much of it
can be defined as rational, particularly given the fact that individuals have
diverse desires and knowledge states. For Weber, the most important kind of
social behavior was reciprocal (or “goal-directed”), in which individuals base
their actions on the expected behavior of other people. Basing actions on the
expectations of others’ behavior is certainly part of contemporary theories of
rational behavior (e.g. Csibra & Gergeley’s, 2009 “Natural Pedagogy,” as
mentioned previously, and to be discussed further below). We take as
a starting point that arguing that children’s causal inferences are rational
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implies that they have a set of expectations about how people (but also
objects and events) behave and makes inferences from those beliefs. This is
hopefully uncontroversial.

The second point that Weber emphasized is that there are compelling
reasons to compare individuals’ behaviors (and the behaviors of societies, but
we will not consider this issue here) to some kind of ideal model. Weber’s
emphasis is reflected in the set of computational models describing the
process by which information gathered from others can affect children’s
inferences about causal, statistical, or linguistic information (e.g. Butterfield
et al., 2009; Eaves & Shafto, in this volume, Shafto et al., 2012; Sobel et al.,
2010). These models have particularly relied on Bayesian methods.

Some have argued that such models of rational inference are implausible as
descriptions of human cognition (see e.g. Jones & Love, 2011; Holyoak &
Cheng, 2011). Weber himself did emphasize that ideal models should be
descriptive (as opposed to normative) and plausible given the data (as opposed
to requiring implausible calculations). Bayesian models have been incredibly
important to advancing our understanding of causal inference, in both chil-
dren and adults, but they are also (usually) intended as computational-level (cf.
Marr, 1982) descriptions of reasoning processes. What this means is that when
we argue that children’s reasoning at certain points is consistent with Bayesian
models, this is not to imply that they are engaging in Bayesian calculations
(either explicitly or implicitly); rather, that such models describe group
behavior well given a particular set of assumptions. Our hope is that other
researchers share this belief, even if they do not explicitly state it.

Furthermore, there are promising computational models that potentially
reveal the ways children might be engaging in such inferences that
approximate Bayesian calculations (e.g. Bonawitz, Denison, Chen, Gopnik
& Griffiths, 2011). These models, however, are still very much under
development. Whether plausible computational descriptions of the process
by which children make inferences from others’ information ultimately
emerge from this kind of investigation, from algorithms that use completely
different kinds of architecture (e.g. McClelland & Thompson, 2007), or
from algorithms yet undescribed, is an open question.

6.2. Natural Pedagogy in Statistical and Causal Learning
The preceding sections have outlined how social information influences
ideas about causal relations in the preschool years, but what is now clearly
necessary is work looking at the beginning of social influence in infancy. We
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have argued that early in infancy, children are using social cues to attend to
relevant information, helping them discern what regularities are important
to their ontological commitments. Such a hypothesis seems quite consistent
with Csibra and Gergeley’s (2009) ideas about “natural pedagogy.” If infants
recognize that human communication and interaction provides them with
the means to make inferences beyond the information they observe, then
one such piece of information should involve where to focus their mech-
anism for constructing useful representations of the environment. But
critically, if we accept this hypothesis, then “natural pedagogy” should also
apply to how children learn causal structure. As such, we would hypothesize
that rational learning about causal efficacy from others should occur very
early in development.

Much of the data supporting this hypothesis come from imitation.
Meltzoff demonstrated that 18-month-olds’ imitative abilities were “goal-
directed”dinfants imitate goals and not actions themselves (see also Schwier
et al., 2006, for some evidence that this ability is in place by the first
birthday). Various researchers suggest that toddlers can imitate causally
effective means to bring about a modeled action (e.g. Elsner & Aschersleben,
2003; Herbert, Gross & Hayne, 2006). Furthermore, toddlers ignore
unnecessary actions unless there is a clear rationale for why those actions
were generated (e.g. Brugger, LaRiviere, Mumme & Bushnell, 2007;
Gergely, Bekkering & Kiraly, 2002; Nielsen, 2006), a behavior that emerges
between 12 and 18 months. This understanding of “natural pedagogy”
suggests that once infants understand that statistical regularity indicates causal
structures, they should begin to make further inferences from the peda-
gogical information in others’ actions.

There are at least two ways in which pedagogical information can
influence infants’ inferences. First, by the end of the first year, infants orient
to the direction of gaze and pointing fingers (e.g. Gredeb€ack, Melinder &
Daum, in press; Hood et al., 1998; Senju & Csibra, 2008). More impor-
tantly, they expect this information to communicate something in the
indicated location (Gliga & Csibra, 2009; Tomasello, Carpenter &
Liszkowski, 2007). These cues can shape cognitive development by helping
infants learn what to learn in a distraction-filled environment (Wu &
Kirkham, 2010; Wu et al., 2011). We propose that knowledge of causal
structure can be reinforced and strengthened by similar social cues.

Second, between 6 and 11 months old, infants register information about
the relation between a sample and a population and integrate intentional
information, such as gaze following, intomaking such inferences (e.g. Denison
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et al., 2012; Xu & Denison, 2009; Xu & Garcia, 2008). At 15 months (and
potentially earlier), infants’ ability to make causal generalizations is influenced
by contextual factors (i.e. by information they observe, but also by what they
specifically did not observe; Gweon et al., 2010; Yang et al., submitted for
publication). At 20 months, toddlers use others’ intentional actions about
samples as a basis for making causal inferencesdinfants infer that an individual
who selects a sample nonrandomly has a preference for the contents of that
sample, but one who constructs the same sample randomly potentially does
not (Kushnir et al., 2010). While understanding the causal efficacy of prefer-
ence develops between 14 and 18 months (e.g. Repacholi & Gopnik, 1997), it
is quite possible that even younger infants are sensitive to this intentional
information, particularly when learning from data obtained from imitation.
More generally, understanding knowledge (causal or otherwise) from
othersdthe basis of the “trust in testimony” research programdmight be
considered as a rational process as well (Butterfield et al., 2009; Eaves &
Shafto, in this volume; Shafto et al., 2012). Describing how this process
unfolds and develops are important open questions for subsequent research.
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Abstract

A critical question for developmental psychologists concerns how representations in
infancy are best characterized. Past and current research provides paradoxical evidence
regarding the nature of early representations: in some ways, infants appear to build
concrete and specific representations that guide their online perception and under-
standing of different events; in other ways, infants appear to possess abstract repre-
sentations that support inferences regarding unseen event outcomes. Characterizing
the nature of early representations across domains is a central charge for devel-
opmentalists because this task can provide important information regarding the
underlying learning process or processes that drive development. Yet, little existing
work has attempted to resolve this paradox by characterizing the ways in which infants’
representations may have both abstract and concrete elements. The goal of this
chapter is to take a close look at infants’ early representations of goal-directed action in
order to describe the nature of these representations. We first discuss the nature of
representations of action that infants build through acting on the world and argue that
these representations possess both concrete and abstract elements. On the one hand,
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infants appear to build representations of action that stress goal-relevant features of
actions in an action- or event-specific fashion, suggesting specificity or concreteness.
On the other hand, these representations are sufficiently abstract to not only drive
action but also support infants’ perception of others actions and to support inferences
regarding unseen action outcomes. We next discuss evidence to suggest that by the
end of the first year of life, infants possess increasingly abstract representations of the
actions of others and use contextual cues, including linguistic statements accompa-
nying action, to flexibly specify the level of representational specificity. We further
consider the possibility that language may play a role in infants’ ability to build more
abstract representations of goal-directed action.

1. THE NATURE OF EARLY LEARNING
AND REPRESENTATIONS

A critical question for developmental psychologists concerns how repre-
sentations in infancy are best characterized. Are infants largely sensorimotor
learners that come to understand the world in a concrete, trial-and-error
fashion, as Piaget (1952) would have suggested? Or can infants form abstract
representations and engage in inferentially based learning? This central
question dates back to Plato and Aristotle and permeates not only classic and
contemporary debates regarding the nature of early learning but also impacts
societal views of infants more broadly.

Historical views, and some contemporary perspectives, portray infants as
primarily specific, concrete, and perceptual-motor learners (Cohen &
Cashon, 2006; Haith, 1998; Haith & Benson, 1998; Piaget, 1952; Smith,
1999). In contrast, more recent perspectives have granted infants’ abstract
knowledge and inferential skills (Carey, 2009; Leslie, 1988; Spelke, 2000;
Xu, 2007). Tension remains with respect to the nature of learning in early
infancy, however, because in some ways, early learning does appear to
produce specific and concrete representations, and whereas in other ways,
learning appears to drive the acquisition of abstract representations that
support inferences. Critically, then, to make progress in the field, the nature
of early learning requires further consideration. The goal of this chapter is to
examine early learning with respect to how infants construct representations
of goal-directed action. Specifically, by selectively focusing on this topic, we
seek to describe the ways in which infants’ representations, in the arena of
goal-directed action, can be best characterized.

In Sections 2 and 3 of this chapter, we discuss evidence to suggest that
infants build representations of actions on an action-by-action basis, suggesting
concreteness and specificity in infants’ representations. These findings suggest
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that at first, infants’ understanding of goals may be embeddedwithin particular
actions. However, these representations also possess elements of abstractness:
the representations that infants form through acting on the world are also
available to guide perception and to serve to support inferences regarding
unseen action outcomes in infants’ own and others’ actions. In Section 4, we
discuss new evidence to suggest that, by the end of the first year of life, infants
may possess the ability to build representations of the actions of other that are
increasingly abstract and that infants may use contextual cues, such as the
linguistic statements accompanying action, to determine the appropriate level
of representational specificity (e.g. does an object selection reflect a transient
goal, or enduring preference, for the object?). We consider the possibility that
language may play a driving force in the creation of increasingly abstract
representations of action. We close by considering the implications of these
claims for not only how infants produce action and understand the action of
others but also for the nature of early learning more broadly.

2. LEARNING AND REPRESENTATIONS AS CONCRETE
AND SPECIFIC VERSUS ABSTRACT AND INFERENTIAL

Research over the past several decades has demonstrated that infants make
inferences about the world based on abstract knowledge. Work on infants’
understanding of the physical world and infants’ early categorization abilities
has, in fact, used infants’ ability to make inferences about novel events and
exemplars as evidence of the possession of abstract knowledge. For example,
research on infants’ perception and understanding of the physical world has
revealed that infants, from very young ages, make inferences about the
outcomes of hidden events based on their knowledge of abstract physical
principles that govern object motion (e.g. continuity, solidity, inertia,
gravity, etc.; e.g. Baillargeon, 1987; Spelke, 1994). Research has also
demonstrated that infants make inferences about the sorts of entities that
engage in particular behaviors as a function of category membership versus
mere perceptual similarity to a prior exemplar (McDonough & Mandler,
1998; Mandler & McDonough, 1998).

Other studies have directly investigated infants’ ability to make infer-
ences per se. In a landmark paper, Baldwin, Markman & Melartin (1993)
took up the issue of whether infants, before the end of the first year of life,
can make inferences about nonobvious object properties after seeing a single
exemplar. Nine- and 16-month-old infants were shown two toys in
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succession: one that possessed an interesting nonobvious property (e.g. it
made a noise when squeezed) and one that was perceptually similar but
lacked the nonobvious property. Infants at both ages attempted to reproduce
the property when playing with the second toy, suggesting that infants
inferred that the second object would possess the same property as the first
based on its similar appearance (in a follow-up study, infants did not expect
a second dissimilar object to possess the unseen property).

Subsequent work by Xu and colleagues has revealed that infants possess
quite impressive inferential abilities: by 8–12 months of age (Denison &
Xu, 2010; Dewar & Xu, 2010; Xu & Garcia, 2008), and perhaps as early as
6 months of age (Denison, Reed & Xu, in press), infants make inferences
from populations to samples and vice versa. Moreover, infants take into
account a number of different pieces of information in forming inferences
(e.g. number of objects of each type in the scene, their physical arrange-
ment, etc.; Tégl�as et al., 2011). This work suggests that infants appear to
possess abstract representations and that these representations drive
inferences.

Yet, there is evidence to suggest that, at least in certain domains, what
infants learn appears to be highly specific to the task at hand. In terms of
motor development, Adolph and colleagues (Adolph, 2000; Kretch &
Adolph, in press) have shown that infants learn in a posture-specific manner.
For example, consider infants’ ability to navigate a risky drop-off (Kretch &
Adolph, in press). Twelve-month-old experienced crawlers refuse to climb
down drop-offs that are too steep to navigate; in contrast, novice walkers of
the same age step over the very same drop-off. Just 6 months later, as
a function of walking experience, 18-month-old experienced walkers will
not step down a risky drop-off but instead use alternate strategies to navigate
the drop-off. These findings suggest that rather than learning a general fear
of heights, infants learn which drop-offs can be descended one posture at
a time.

Similarly, with respect to learning how to use tools, 12- to 18-
month-old infants appear to learn about which part of a tool is meant to be
held rather than learning about tool function (Barrett, Davis & Needham,
2007). After training with a tool, infants succeeded on novel tool use tasks
that required similar grasp placement to that of the training tool but not
a novel task that required a similar functional use of the training tool. These
findings suggest that infants of this age may be learning the specifics of how
to act on a tool through active experience, but not more abstract features of
tool use events like a tool’s function.
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Memories in early infancy, too, appear to be characterized by a high
degree of specificity. Between 2 and 6 months of age, infants trained to kick
in order to move a mobile attached to their legs with ribbon must be tested
with the original mobile in order for them to evince memory of the original
event. With age, infants can retrieve memories across changes in the context.
Similar results have been obtained using deferred imitation paradigms (see
Rovee-Collier, 1999).

Finally, infants’ ability to understand how properties of objects influence
event outcomes appears to develop in an instance-by-instance fashion
(Baillargeon, 2004; Baillargeon, Li, Gertner & Wu, 2011). Rather than
learning how a given object property, such as object height, influences
outcomes across a range of event outcomes, infants appear to learn in
a category-specific fashion. For example, infants recognize how object
height influences outcomes for occlusion events prior to when they
learn how height influences outcomes in containment events (Hespos &
Baillargeon, 2006).

Taken together, the above findings suggest that in some ways, infants’
early representations are abstract, yet in other ways, infants’ learning and
representations appear to be quite concrete and specific to the task at hand.
Our goal in the remainder of the chapter is to look closely at infants’
representations of goal-directed action as a means to gain leverage on the
question of whether and when infants build representations of human action
that are more toward the concrete and specific end versus whether and when
infants build representations of human action that are more toward the
abstract end as well as to discuss the means by which infants acquire and
construct these representations.

3. INFANTS’ EARLY REPRESENTATIONS OF
GOAL-DIRECTED ACTION

Goal-directed action provides a fertile starting ground for addressing ques-
tions regarding the nature of early representations for several reasons. Most
critically, infants learn to produce and understand goal-directed action. Over
the first two years of life, infants’ production of action becomes increasingly
sophisticated: infants progress from protoreaching, to reaching for objects, to
producing means-end sequences, to using simple tools (Gibson, 1988;
Rochat, 1989). Paralleling these developments, infants’ ability to recognize
the goal of others’ actions becomes increasingly sophisticated over the first
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two years of life: infants start by identifying the goal of simple reach and
grasp acts (Woodward, 1998), progress to understanding the nature of
referential acts (Woodward & Guajardo, 2002), and subsequently come to
recognize the goal of more complex action chains (Sommerville &
Woodward, 2005a; Woodward & Sommerville, 2000). The fact that there is
clear evidence for learning with respect to the construction of representa-
tions of goal-directed actions provides the opportunity for characterizing
these representations and infants’ means of acquiring them. And, specifying
the nature of infants’ representations of goal-directed action is a critical step
to identifying the underlying learning process or processes supporting the
construction of these representations. In the following sections, we examine
infants’ representations of goal-directed action by characterizing what
aspects are concrete and specific versus what aspects are abstract and general,
and how these representations are established.

3.1. Concrete and Specific Aspects
Infants appear to learn to produce goal-directed actions in a somewhat
concrete and specific manner, one action at a time. Infants learn to reach
(Bertenthal & Clifton, 1998; Rochat, 1989), before they learn to produce
means-end sequences (Willatts, 1999) and before they can use tools (Piaget,
1952). Thus, it does not appear that infants are developing the ability to have
goals or act toward goals rather they appear to be learning how to enact goals
in action.

According to Piaget (1952), development in infancy consists of the
elaboration, differentiation, and ultimately the combination of different
sensorimotor schemas. For example, Piaget argued that the ability to
produce means-end sequences (sequences in which direct access to a goal is
blocked and infants have to act on an intermediary object to achieve the
goal; e.g. pulling a cloth to retrieve an out-of-reach toy that the cloth
supports) at stage 4 (about 8 to 12 months of age) came about because infants
learn that (a) sensorimotor schemas can be combined and (b) one sensori-
motor schema (in this case, the act of pulling) can be subjugated to another
sensorimotor schema (in this case, the act of grasping the toy). That is, infants
appear to be learning that one action can be a “means” to another action or
outcome, the “end,” implying that at some level, infants represent such
sequences with respect to their underlying logical structure (e.g. get X to
achieve Y). For Piaget (1952), the production of means-end sequences was
an important development, as it signaled the onset of truly intentional
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behavior on the part of infants (providing evidence that infants separate
means from ends).

Yet, as Piaget (1952) noted, and as modern research has confirmed,
décalage exists in infants’ production of means-end sequences. To illustrate,
consider two different means-end sequences: one in which infants must pull
a cloth to retrieve an out-of-reach toy that is supported by the cloth and
another in which infants must use a plastic cane to retrieve a toy that sits in
the crook of the cane. Both sequences fit Piaget’s criteria of means-end
sequences, and both involve similar subgoal and goal actions (pulling on an
intermediary object to retrieve a goal object). Yet the cloth-pulling problem
is solved several months before the cane-pulling problem (Piaget, 1952;
Schlesinger & Langer, 1999), suggesting that infants’ performance on these
tasks may be driven by separate event-specific representations. Put another
way, infants may be learning how goals can be achieved in the context of
different objects or situations based on the properties of such objects or
situations rather than globally learning that one act or action can be used as
a means to another act or action.

In a recent study, our lab evaluated whether infants represent means-end
sequences based on their underlying structural similarity (Sommerville,
2007). To do so, we gave 10-month-old infants and 12-month-old infants
the opportunity to solve four different types of means-end problems. Infants
received trials in which they could pull a string attached to a toy in order to
retrieve an out-of-reach toy, trials in which they could pull a cloth sup-
porting an out-of-reach toy in order to retrieve the toy it supported, trials in
which they could open a translucent box to retrieve a toy it contained, and
trials in which they could pull a cane that surrounded a toy to obtain the toy.
Infants received 4 trials of each type in a fixed order (in the order described
in order to maximize the investigation of individual differences), based on
the level of difficulty (easier to harder), as determined by pilot work.

We sought to compare rates of solving the different problem types and
potential interrelations in performance across the tasks. Although past work
had demonstrated décalage in performance across the means-end tasks, we
reasoned that if common abstract representations of the underlying structure
of such tasks drive, at least in part, infants’ performance on the tasks, then
infants’ ability to solve the different problem types should be strongly
interrelated. That is, independent of task difficulty, infants who are good at
solving the cloth-pulling task (with respect to other infants), for example,
should also be good at solving the cane-pulling task (with respect to other
infants), for example.
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Perhaps unsurprisingly, infants’ performance varied as a function of task
type (see Fig. 13.1). Figure 13.1 indicates the average number of planful
solutions (solutions that appeared clearly directed toward retrieving the toy;
see Sommerville & Woodward, 2005a for specific criteria) for each of the
tasks. The string- and cloth-pulling problems were significantly easier for
infants to solve than the box-opening and cane-pulling problems. More-
over, interrelations among different means-end problems were weak at best,
as Table 13.1 indicates. Infants’ performance on the string and cloth prob-
lems were weakly related, but performance on all other problems was
independent of one another. Taken together, these findings suggest that it is
unlikely that infants are representing these problems in terms of their
underlying means-end structure; if they were, interrelations across the tasks
would be expected. Instead, our results raised the possibility that infants’
performance across the tasks differed either due to differences in the nature
of the problem (e.g. support vs. surround), the extent of the spatial relation
(e.g. weak contact vs. strong contact) between the intermediary and goal
object, or in terms of the motor demands of the task.

Figure 13.1 Infants’ planful solutions as a function of problem type.
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We attempted to distinguish these possibilities in a subsequent study
(Sommerville, 2007). We specifically focused on the cloth and cane prob-
lems because prior work has implied that the two problems may differ in
difficulty due to differences in the involved spatial relations. For example,
Schlesinger and Langer (1999) labeled the cloth-pulling problem as the
support problem and the cane-pulling problem as the surround problem,
implying that any task differences may be driven by differences in the
abstract spatial relation between the intermediary object and goal object
across the two problems. We tested this possibility by comparing infants’
performance on the typical cane problem with their performance on
a modified cane problem in which a support sat beneath the toy, attached to
the crown of the cane. By placing a support under the crown of the cane, we
effectively turned a surround problem into a support problem. We reasoned
that if differences in understanding the abstract spatial relations involved in
the task drove differences in performance across the cane and cloth prob-
lems, then turning a surround problem into a support problem would
significantly improve infants’ performance. This modification, however, did
not significantly improve infants’ ability to solve the task, suggesting that it
was unlikely that the difference in the abstract spatial relations in the task
accounted for differences in performance across the tasks. Instead, it may be
differences in the motoric demands that account for infants’ differential
performance across the tasks or the relative familiarity of the objects involved
in the problem. Although the cane and cloth problems involve similar
subgoal actions, using the cane to retrieve an out-of-reach toy may be
significantly more difficult due to the fact that the stalk must be grasped in
order to pull the cane (infants can merely put their hand down on the cloth
and pull to make the cloth move), and because the cane has more degrees of

Table 13.1 Interrelations among different means-end problems

Cloth
problem

String
problem

Box
problem

Cane
problem

Cloth problem d r (79) ¼ 0.28,
p ¼ 0.01

r (71) ¼ �0.09,
p ¼ 0.48

r (63) ¼ �0.16,
p ¼ 0.21

String problem d d r (71) ¼ 0.09,
p ¼ 0.44

r (63) ¼ 0.03,
p ¼ 0.81

Box problem d d d r (63) ¼ 0.20,
p ¼ 0.12

Cane problem d d d d
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freedom than the cloth. Alternately, infants may have more experience
interacting with cloths and strings than canes and boxes. In either case, the
findings challenge the idea that infants represent these problems in terms of
their underlying means-end structure per se.

Further support for the finding that infants may build action- or event-
specific representations of particular means-end sequences comes from
a study by Sommerville & Woodward (2005b). This study investigated
infants’ ability to take into account the causal constraints of support
sequences in which a toy was placed, out-of-reach, on a supporting object:
infants received trials on which a toy sat on a support versus trials in which
a toy sat adjacent to the support and they were encouraged to get the out-of-
reach toy. Whereas 10-month-old infants’ tendency to pull the support in
order to get the toy did not vary with respect to the toy’s location when the
toy was supported by a flat cloth, infants at the same age varied their cloth-
pulling behavior systematically, pulling the support more frequently when it
supported the toy than when it sat adjacent to the toy, when the support was
a more substantial box. These findings suggest that although both events
consisted of support problems, infants’ performance varied significantly as
a function of the identity of the support. Again, motoric differences between
the tasks or the relative familiarity of cloths versus boxes may factor into
differential task performance.

Taken together, the results of the above studies suggest that infants may
build, via experience, specific representations of particular means-end
sequences rather than learning about means-end sequences as a whole. That
is, infants may learn to solve (and understand, see below) different action
sequences not based on their underlying means-end structure or based on
the particular spatial relations involved in the sequences, but rather based on
their experience with and understanding of how different objects can be
used (cf. Lockman, 2000).

The account above is similar to arguments that have been made with
respect to infants’ developing knowledge of the physical world. Baillargeon
and colleagues (Baillargeon, 2004; Baillargeon et al., 2011) have argued that
infants possess event categories, such as containment, occlusion, collision,
and covering, and that learning about how event and object properties
influence event outcomes happens within a given event category, one
category at a time. For example, infants learn how the variable of object
height influences event outcomes in occlusion prior to the time at which
they learn how this same variable influences event outcomes in containment
(Hespos & Baillargeon, 2006). Differences in learning across categories are
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assumed to reflect differences in the relative frequency of different events in
the real world (e.g. occlusion is more frequent than containment), and thus
infants’ exposure to these events, and ability to learn from these events
(Baillargeon et al., 2011). Similarly, we argue that infants learn how to
perform different goal-directed actions in an “event-specific” fashion. What
may differ across the two accounts, however, is the proposal of how infants
define events. According to Baillargeon’s theory (Baillargeon, 2004;
Baillargeon et al., 2011) events are defined by the types of objects involved
and the particular spatial relation between the involved objects. In contrast,
our findings suggest that infants’ ability to perform particular actions may
depend on the motoric difficulty or demands of the task and/or the rela-
tively familiarity of the objects involved. Indeed, our findings suggest that
“events” of the very same type or category (e.g. surround events) can differ
fairly dramatically in their difficulty for infants depending on the particular
objects involved.

In other ways the picture that we paint is similar to affordance-based
learning accounts (e.g. Gibson & Pick, 2000; Lockman, 2000). According to
these accounts, infants learn about the possibilities for action that different
objects offer that are based on both the properties of a given object and the
infants’ own capabilities. In the same vein, our findings suggest that infants
are learning something object and action specific. However, affordance
accounts stress the role of trial-and-error exploration on infants’ learning
(Gibson & Pick, 2000). As we suggest below, we argue that there are some
instances in which direct experience with objects is not necessary for
building representations of goal-directed actions. Below we discuss evidence
that infants can infer action outcomes, both in their own and others’ actions,
in the absence of direct experience with these outcomes.

3.2. Abstract and Inferential Aspects
3.2.1. Representations of Goal-Directed Action also
Subserve Perception
Over the first year of life, infants’ perception and understanding of the goal-
directed actions of other people undergo developments that parallel those
seen in action. Infants first appear to selectively encode the actor-goal object
relation in simple reach and grasp events (Woodward, 1998), prior to the
point at which they can understand the goal-directed nature of referential
acts, such as eye gaze (Woodward, 2003), and pointing (Woodward &
Guajardo, 2002), and prior to when infants identity the goal object of more
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elaborate action and tool use sequences (Sommerville & Woodward, 2005a;
Sommerville, Hildebrand & Crane, 2008; Woodward & Sommerville,
2000). Consequently, Woodward and colleagues (e.g. Brune &Woodward,
2007; Gerson & Woodward, 2010; Woodward, Sommerville & Guajardo,
2001) have argued that developments in infants’ understanding of goals
happen in a piecemeal fashion, one action at a time. In addition to findings
suggesting that infants’ ability to identify goals within particular goal-
directed actions follow different developmental timetables, there are other
results to suggest that infants first recognize goals as embedded within
particular actions. First, Brune & Woodward (2007) demonstrated that
infants’ understanding of eye gaze and pointing as relational is only weakly
related and that these two aspects of action knowledge likely stem from
distinct aspects of social responsiveness. Second, 10-month-old infants are
successful at perceiving violations to the causal intentional structure of
sequences that involve using a box to retrieve an out-of-reach toy that the
box supports, but infants of this same age do not perceive these causal
violations when a flat cloth acts as the support (Sommerville & Woodward,
2005b). These findings suggest that infants’ ability to perceive the causal
intentional structure of actions appear to develop in an action- or event-
specific fashion, as does their ability to produce particular actions or action
sequences.

Beyond the developmental parallels that exist in infants’ action percep-
tion and production, research has revealed that developments in infants’
ability to perform goal-directed actions drive developments in infants’
perception of others’ actions. First, individual differences in infants’ ability to
perform particular actions predict their ability to identify the goal of these
actions in other people’s behavior: 10-month-old infants who can use
a cloth as an intermediary to retrieve an out-of-reach toy supported by the
cloth interpret another person’s actions on a cloth as directed toward a toy it
supports rather than the cloth itself (Sommerville & Woodward, 2005a; see
also Woodward & Guajardo, 2002 for evidence regarding infants’ pointing
gestures). Second, intervening to improve infants’ ability to perform goal-
directed actions facilitates their ability to identify the goals of others per-
forming these same actions: 3.5-month-old, prereaching infants, given an
intervention designed to improve their ability to apprehend objects,
subsequently identify the goal of another person’s reach and grasp, whereas
those infants lacking this intervention do not (Sommerville, Woodward &
Needham, 2005). Third, it appears to be the case that the production of
goal-directed action per se, as opposed to increased visual familiarity with
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a given action as a result of being able to produce that action, drives
developments in infants’ goal understanding: 10-month-old infants given
active training using a novel tool to retrieve an out-of-reach toy subse-
quently recognized another person’s actions on the tool as directed toward
a goal object, whereas infants given equated visual experience did not
(Sommerville et al., 2008; Sommerville, Blumenthal, Venema & Braun,
2011).

Representations of goal-directed actions established via acting on the
world may also be the source of infants’ attention to and understanding of
the causally relevant features of different goal-directed acts. Ten-month-old
infants’ ability to appreciate the causal structure of the cloth-pulling
sequence (that is to, appreciate that the toy must sit atop, not merely adjacent
to, the support when the support is pulled in order to yield the toy) is
predicted by their ability to produce goal-directed solutions to the cloth-
pulling problem in their own actions (Sommerville & Woodward, 2005b).

Taken together, these findings suggest that through acting on the world,
infants build representations that are sufficiently abstract to drive their own
actions as well as form a basis for their perception and understanding of the
behavior as others. Recent work provides direct evidence that sensori-motor
representations are invoked during action observation, starting in infancy
(e.g. Nystrom, Ljunghammar, Rosander & von Hofsten, 2011), and some
authors have suggested that the development and elaboration of a neuro-
cognitive system that subserves action production and perception likely
accounts for early developments in infants’ ability to perceive and identify
the goal of others’ actions (Gerson & Woodward, 2010; Sommerville et al.,
2008).

At this point, evidence suggests that the representations that commonly
drive the perception and production of goal-directed action, appear to be
preferentially established via active experience, as opposed to equated mere
observation of goal-directed actions (Sommerville et al., 2008). These
findings raise the question of what infants may be gaining via active expe-
rience that they are either not gaining via mere observation (or perhaps not
gaining as efficiently).

Acting on the world may have unique effects on the structure of infants’
representations of the actions of others by providing structure and/or
content to infants’ representations of action. Infants’ ability to produce goal-
directed action appears to enable the construction of novel representations of
action that highlight, or emphasize, the goal-relevant aspects of action (such
as the relation between an actor and her goal object), over and above aspect
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of action that are less relevant or irrelevant to the goal of an action (such as
the spatial trajectory of a reach; Gerson &Woodward, 2010; Sommerville &
Woodward, 2005a, 2005b). For example, Sommerville & Woodward
(2005a, 2005b) demonstrated that whereas 10-month-old infants who were
skilled at solving the cloth-pulling problem in their own actions demon-
strated enhanced attention to a change in the ultimate goal of the cloth-
pulling sequence (the toy) as performed by another person, 10-month-old
infants who were unskilled at solving the cloth-pulling problem in their own
actions showed enhanced attention to a change in the means of the cloth-
pulling sequence (the cloth used to obtain the toy) as performed by another
person. Thus, through experience, infants appear to be constructing
representations of particular actions or action sequences that more strongly
weight the goal of the sequence, and goal-relevant properties, than other
elements of the sequence (e.g. the means of achieving the goal). Active
experience, then, appears to generate representations of action that stress the
goal-relevant structure of action.

Acting on the world, versus mere observation, may have unique or
preferential effects on this restructuring process because of the prospective
demands of producing action. Consider learning to serve a tennis ball: in
order to be successful, one’s actions must become directed toward the end
goal of landing the ball on one’s opponent’s side of the court. Producing
action, then, has a “prospective push” that observing action does not:
producing action is necessarily forward looking, whereas observing action
need not be. From this perspective, it is the real-world demands of producing
successful actions that lead to the creation of representations that preferen-
tially weight goal-relevant information over goal-irrelevant information and
subsequently drive changes in how infants represent the actions of others.

In addition, to the role of active experience in creating goal-structured
representations of action, it is also possible that acting on the world allows
infants’ to attach novel content to representations of action. Acting on the
world is accompanied by internal states (such as feelings of striving, yearning,
etc.) and driven by mental states (intentions). Infants’ ability to track and
attend to their own internal and mental states while acting may provide
a means for attaching these internal and mental states to the actions of others
(see also Meltzoff, 2002). For example, as infants become skilled at solving
the cloth-pulling problem, they may recognize that just as they have a goal
of obtaining the toy in this context, so too does another person when solving
the cloth-pulling problem (Sommerville & Woodward, 2005a, 2005b).
Here, active experience would play a privileged role in providing internal
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and mental states information since such information is not directly
observable and therefore not readily derived from direct observation.
According to this proposal, infants must possess at least a basic ability to
reflect on their own internal and mental states.

Although there is evidence to suggest that experience acting on the
world may preferentially lend structure, and perhaps content, to infants’
representations of action, we do not intend to suggest that observation plays
no role changing in influencing infants’ action representations. Indeed, an
important, outstanding question is whether differences in acting versus
observing yield qualitatively different effects, or quantitatively different
effects, on infants’ perception and understanding of the goal-directed nature
of action. Moreover, it is possible that the relative contributions of active and
observational experience to infants’ action representations may vary
according to a range of factors, including infants’ age and relative degree of
expertise with a given action. For example, infants’ ability to benefit from
observation may depend on how closely a given observed action is to an
action already in an infants’ motor repertoire. When infants are young,
novel actions may be quite distinct from actions that infants can perform and
therefore difficult to relate to existing action representations; with age,
infants can produce an increasingly broad and varied array of goal-directed
actions, so novel actions observed by others may be more readily mapped on
to infants’ existing repertoire. Thus, observation may become an increas-
ingly important source of learning with age. Similarly, infants’ ability to
benefit from observation may also depend on their relative experience and
expertise with a particular action. When infants are completely inexperi-
enced with a given action, observation may yield little benefit; with
increasing experience and skill, it is possible that observation may serve to
consolidate or expand on what is established through acting on the world.
One important direction for future work is to determine the range of
contexts in which acting on the world appears to be a privileged learning
source for changing representations of action.

3.2.2. Representations of Goal-Directed Action Support Inferences
The preceding section suggests that infants’ ability to act on the world,
perhaps uniquely, provides them with a means for building novel repre-
sentations of specific actions. These representations are concrete in the sense
that they are action specific: rather than acquiring a general concept of a goal
through acting, infants appear to perceive or understanding the goals
underlying particular actions.
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In the proceeding sections, we discuss evidence to suggest that infants’
representations of goal-directed action also have some abstract elements.
Specifically, they support inferences, both with respect to the likely goals
and outcomes of the actions of others, and with respect to outcomes in their
own actions. Existing evidence suggests that infants’ representations of goal-
directed action guide online action analysis (Cannon & Woodward, 2012).
In addition, as discussed below, infants go beyond the information given to
make predictions about unseen action outcomes in novel contexts.

3.2.2.1. Inferences in the Production of Goal-Directed Action
Across two recent studies, we investigated whether infants could apply
information gained from a recent motor act to a novel situation in order to
come up with a motor plan or decision in the absence of direct experience.
According to some accounts (Gibson & Pick, 2000), infants combine
information from different motor acts initially in a largely trial-and-error
fashion. For example, infants might learn which objects are sufficient to use
as tools to bring a given toy within reach by first trying to use a range of
different objects, only a subset of which yield success, and only later selec-
tively choose tools based on whether they can be used to obtain out-of-
reach toys.

In the first study, we (Upshaw & Sommerville, in preparation; Yau,
Upshaw & Sommerville, 2011) investigated whether, after learning about
the unseen property of an object (i.e. the object’s weight), infants could use
this information to plan their actions toward that object in a novel context.
Twelve-month-old infants received training and experience with two
plastic blocks that were the same size and shape but that differed in color
(one was red and one was yellow) and weight (one was 70 gdthe weight of
a typical bath toydand one was 470 gdsurreptitiously weighted so that it
was considerably heavier than a typical bath toy). During a training session,
infants were encouraged to imitate simple direct actions on the block, such
as placing the block on a platform or dropping it into a bucket to allow them
to encode the respective weight properties of the blocks.

On test trials infants were presented with a problem-solving task in
which a single block was placed out-of-reach on a cloth, such that the cloth
could be pulled to bring the block within reach, and they were encouraged
to get the block. Past studies suggest that infants readily solve this problem by
12 months of age (Piaget, 1952; Willatts, 1999). On alternate trials, we
varied the block identity, such that for half of the test trials, the block on the
end of the cloth was heavy and for half of infants, the block was light. The
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question was whether infants would use information about the block weight
to plan their actions on the cloth. We predicted that if infants do take into
account an object’s weight, we would observe differences in how infants
acted on the cloth as a function of the block’s weight. Critically, we
examined differences from the very first test trial forward to determine
whether infants’ actions on the cloth reflected an inference about the impact
of block weight on the infants’ approach to the cloth or whether it reflected
trial-by-trial learning.

Infants were randomly assigned to one of the two conditions: a control
condition and a trick condition. Training was identical for both conditions.
Test trials differed in that for the control condition, the color–weight
pairings of the blocks were identical to training, whereas for trick condition,
the color–weight pairings were reversed (unbeknownst to the infant). To
determine whether infants’ actions on the cloth reflected previously
acquired information about the block’s weight, we compared infants’
actions on the cloth when the block was heavy. Critically, the two condi-
tions differed on these trials because whereas in the control condition infants
believed the block to be heavy, in the trick condition infants believed it to be
light. We coded infants’ failed attempts on the cloth on these trials; a failed
attempt was defined as a pull produced by the infant that did not move the
block toward the infant, presumably because the infant was exerting
insufficient force on the cloth. As Fig. 13.2 indicates, infants in the trick
condition had significantly more failed attempts when retrieving the heavy
block than infants in the control condition. Because the cloth-pulling task
was identical for the two conditions, the difference must have stemmed from
the manner in which infants mentally represented the block. Thus, these
findings suggest that infants use prior information about an object, in this
case, an object’s weight, to infer how to act in a novel context.

In the second study (Sommerville & Feldman, 2008), we asked whether
inferences could also guide infants’ motor decisions; that is, their choice of
which of two objects to act on. Specifically, we asked whether, after training
with a tool to retrieve an out-of-reach toy, infants could select between
potential novel tools based on their causal efficacy. Past work by Brown
(1990) has demonstrated that infants, by ages 18 to 24 months of age, select
tools based on causally efficacious propertiesdthat is, whether the tool
possessed the properties necessary to bring an out-of-reach toy within reach.
Our question was whether younger infants could take information gleaned
from a novel motor actdusing a P.V.C. cane to retrieve an out-of-reach
toydand combine this information with knowledge of the properties of
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novel objects to decide which of these novel objects would be efficacious to
use as a tool.

Ten-month-old infants received training with a yellow plastic cane until
they became skilled at using the cane to retrieve an out-of-reach object (at
the onset of training, infants rarely used the novel cane to retrieve an out-of-
reach toy). Prior to test trials, infants were introduced to two novel objects.
Each object was shaped like a shepherd’s crook and differed from the
training tool in size, shape, and material. One object was a piece of rope
reinforced with silver duct tape, and the other object was a piece of lei,
reinforced with wire. Infants were allowed to interact with only the end of
the two novel objects in order to learn about their respective properties.
Critically, although either novel potential tool could be used to retrieve the
out-of-reach toy, only one (the duct taped rope) possessed the combination
of object properties required to efficiently retrieve the toy.

On test trials, infants were allowed to select between the two novel
objects. To ensure that infants’, selections were not merely based on
a baseline preference for either potential tool and to ensure that infants were
selecting between the objects on the basis of their efficacy for retrieving the
out-of-reach toy, infants received two types of test trials. During problem-
solving trials, the potential tools surrounded identical out-of-reach toys, and

Figure 13.2 Infants’ failed attempts as a function of condition.
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infants could select a tool to retrieve the toy. During no-goal trials,
administered as a measure of baseline preference, infants were presented
with both potential tools but no toys were available to retrieve. If infants
recognized that only one of the objects possessed the properties necessary for
efficiently retrieving the toy, then they should preferentially select the rope
on the problem-solving trials but not the no-goal trials.

Our question was whether infants could use representations gained from
their tool use experience, in combination with information acquired about
the properties of the potential tool, to guide their motor decisions. We
found that, from the first trial onward, infants selected between the potential
tools based on (a) whether they possessed the requisite properties to effi-
ciently solve the problem and (b) whether or not a goal was present on the
trial (see Fig. 13.3). On problem-solving trials, infants more frequently
selected the rope than the lei; on no-goal trials they preferentially selected
the lei. Thus, infants’ choices varied systematically based on the task at hand
and based on the properties of the objects. Infants showed this pattern of

Figure 13.3 Infants’ object selections as a function of trial type.
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performance from the very first test trial on. Critically, because infants never
had the opportunity to use the novel objects as tools, and because these
objects were entirely new to infants, infants needed to infer the impact of the
felt properties of the two novel objects, based on a brief exposure, for the
problem outcome. These findings suggest that at least in some cases, infants
can additively and generatively combine information from different motor
acts, without having to actively “try out” particular motor solutions, to
come up with accurate motor decisions.

Taken together, these findings suggest that infants can sometimes
combine information from different goal-directed actions in order to infer
how to act and which objects to act on to produce a desired outcome.

3.2.2.2. Inferences in the Perception of Goal-Directed Action
To address the question of whether infants can infer outcomes of others’
actions, we first investigated infants’ inferences about the outcome of a tool
use event, after only seeing the first step of the event. Past work has
established that for 12-month-old infants, following habituation to
a completed multi-step action sequence (pulling the cloth to get a toy it
supported), infants can identify the toy as the goal of the sequence after only
seeing the first step (Sommerville & Woodward, 2005a). In a subsequent
study, we investigated whether, following training with a novel tool to
retrieve an out-of-reach toy, infants could infer the actor’s goal as the toy
after only seeing her act on the tool (Sommerville et al., 2011).

Ten-month-old infants were trained to use a cane to retrieve an out-of-
reach toy that sat in its crook. Past work established that 10-month-old
infants were poor at spontaneously using the cane to obtain out-of-reach
toys but could be trained to do so after a short session (Sommerville et al.,
2008). Following an active training session, in which the experimenter used
a number of different methods to enhance infants’ ability to solve the cane-
pulling problem, infants took part in a violation-of-expectancy (VOE)
paradigm. Another group of 10-month-old infants were assigned to
a matched observational session in which they watched an adult experi-
menter repeatedly solve the cane-pulling problem (infants in the observa-
tional condition were yoked to infants in the active training condition in
terms of the number of trials they saw).

During the VOE, infants watched events in which an actor sat behind
a stage supporting a cane that surrounded an out-of-reach toy. The actor
reached for the stalk of the cane at which point an occluding screen was
partially raised, obscuring the event outcome from view. To an adult
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observer, raising the screen at this point gave the impression that an ongoing
event had been interrupted. Anecdotal evidence suggests that infants may
have had the same impression, as they often tried to peek over the top of the
screen when the screen was partially raised.

On test trials, the screen was lowered to reveal the actor holding the toy
or holding the cane. We reasoned that if infants inferred that the toy was the
actor’s goal, after seeing her grasp the stalk of the cane, they would look
longer to the cane outcome than the toy outcome, despite the fact that the
cane event was more perceptually familiar than the toy event and that acting
on the cane was the last thing they saw do. If so, this would be evidence that
infants inferred that the actor’s actions on the cane were directed toward the
toy and not the cane itself.

Infants actively trained to use the cane demonstrated longer looking to
the cane event than the toy event, whereas infants that received matched
observational experience did not differentiate between the test events. These
differential findings between conditions suggest that it was not mere prior
visual exposure to the cane that drove the effects of the active training
condition. Thus, infants appear to build representations of tool use events by
acting on the world, and these representations support inferences about the
goals behind others’ actions. Research from other labs suggest that such
inferences may also guide infants’ ability to infer the goal of a goal-directed
action after seeing only a failed attempt (Brandone & Wellman, 2009).

In two subsequent studies, we investigated whether infants cannot only
infer the goal of an actor’s goal-directed action but can also infer the physical
outcomes of particular goal-directed actions. In one study (Loucks &
Sommerville, 2011; Loucks & Sommerville, under review), we examined
whether infants could infer the outcome of a goal-directed action that
involved dropping an object into a container. In conditions in which
individuals drop objects into containers, the outcome of the action (e.g.
whether or not it lands in the container) is dependent on several factors,
including the size of the container (success is more likely when a container is
wide than narrow), the drop height (lower drops are more likely to be
successful than higher drops), and the size of the object with respect to the
container (if the object is small with respect to the container drops are more
likely to be successful than if the object is large with respect to the container).
We reasoned that if, when watching dropping actions, infants were inferring
the outcome, then they would selectively attend to changes to dropping
actions that influenced the likelihood of success (i.e. getting the object into
the container).
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Because we were investigating a previously unexplored aspect of action
perception and understanding, we first carried out an experiment with
adults. Adults participated in a perception task. During the perception task,
adults watched videos of three different actors successfully dropping a small
beanbag into both wide and narrow containers. Each of the actors dropped
the beanbag from five different body-centered heights: hip height, middle
torso height, shoulder height, forehead height, and overhead height.
Importantly, the only difference between the wide and narrow container
videos was the container itself. Still frames were taken from each of these
videos for use in the perception task. Each still frame depicted an actor
holding the beanbag over the container at one of the five heights.

During each trial of the perception task, adults watched a video of
a dropping event and were then presented with a still frame image at which
point they were asked to determine whether the frame was from the video
or not. Still frames for half of the trials depicted the same height used in the
video, whereas the other half depicted a different height. Half of the adults
only viewed dropping into the wide container (wide condition), whereas
the other half only viewed dropping into the narrow container (narrow
condition). We hypothesized that adults would be especially accurate at
detecting increases in height (upward changes) relative to decreases in height
(downward changes) in the narrow condition since dropping from higher up
increases the chance of a miss. We hypothesized that there would be no such
differences in the wide condition.

In analyzing the results from the perception task, we focused only on
trials in which the height changes were one step upward or downward (e.g.
from shoulder to forehead and shoulder to torso). This was a measure of how
finely sensitive adults were at detecting height changes. The analysis of the
perception task confirmed the hypothesized pattern: adults were signifi-
cantly more accurate at detecting one-step upward changes relative to one-
step downward changes in the narrow condition but were equally accurate
at detecting these same two height changes in the wide condition. Adults
appear to be attempting to predict the outcome of the dropping action, as
thus they key on information that will be relevant for this prediction.
However, adults increase attention to this information only when it is
directly relevant to predicting the outcome.

Adults also received a dropping task in which they attempted to drop the
same beanbag from the same five body-centered heights into the same
narrow container used in the videos. Each trial, after lifting the beanbag to
a specified height, an experimenter positioned the container on the floor in
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front of the participant. Several floor positions were used in order to collect
multiple trials for each height. The experimenter coded whether or not each
drop was successful.The results of the dropping task revealed two key
findings. First, as drop height increased, dropping accuracy decreased: This
was reflected in a significant linear trend to the data. Thus, increasing drop
height does indeed increase the variability in specifically targeting a drop
location. To our knowledge, this is the first empirical evidence of this
phenomenon. Second, there was a significant positive relation between
overall performance on the perception task and overall performance on the
dropping task. That is, adults who were more accurate at targeting their
drops tended to be more accurate at detecting changes in drop height in
another’s dropping actions. Thus, adults’ motor experience and expertise
with the witnessed action may help them infer the outcome of the dropping
action.

We next investigated whether infants also infer the outcome of dropping
actions. We focused on infants at 10 months of age as it is by roughly this age
that infants can engage in dropping behavior in their own actions (Ruff,
1984). We designed a habituation task that closely matched the perception
task used with adults. The stimuli were six videos of precision droppingda
standard, higher height, and lower height video, involving both narrow and
wide containers. Different groups of infants participated in each of the
container conditions. For both conditions, infants were first habituated to
the standard video in which the actor reached for and lifted an object
(a purple elastic ball) over the transparent container and successfully dropped
it in. Following habituation, infants were shown the higher height video, in
which the object was dropped from higher than the standard, and the lower
height video, in which the object was dropped from lower than the stan-
dard. Importantly, the height differences were matched between conditions,
and the actor moved in sync with a metronome to equalize the duration of
each movement. Thus, the only difference between conditions was the
width of the container.

As predicted, we found an interaction between drop height and
container width on infants’ looking times. In the narrow container condi-
tion, infants looked significantly longer at the higher height over the lower
height drop, but in the wide container condition, no significant preference
was observed. These results indicate that by 10 months of age, infants infer
the outcomes of dropping actions and selectively encode information that is
relevant to the outcome. Infants likely inferred that an increase in drop
height, when the container was narrow, might change the probability of
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whether or not the object would land in the container, and therefore
selectively increased attention to an increase in drop height for the narrow
container condition.

In another study (Loucks & Sommerville, 2012), we investigated
whether 10-month-old infants could use information about the manner in
which an actor grasped an object to make inferences about the event
outcome. Specifically, we investigated infants’ perception of events
involving a precision grasp, and how their perception varied as a function of
whether or not they, themselves, were capable of performing the precision
grasp. We reasoned that infants might be able to use their motor experience
to infer which actions could, or could not, be performed, using the precision
grasp.

Infants in this experiment participated in a habituation task, designed to
probe infants’ understanding of the functional consequences of precision and
whole-hand grasps, and a grasping task, designed to measure infants’ ability
to perform precision grasps in their own behavior. During the grasping task,
infants were presented with five colorful “sticks” (stacked pieces of Lego)
that were presented inside of one of the two transparent plastic containers:
the wide container or the narrow container. Although both containers were
approximately the same height as the sticks, the wide container was
approximately twice the width of the sticks, and the narrow container was
only slightly wider than the sticks. Critically, when the sticks were in the
narrow container, a precision grip was the easiest and most efficient way to
remove the toy from the container. Each trial, the infant was presented with
one of the sticks inside one of the containers and was encouraged to retrieve
the stick.

The grasp used to ultimately remove the stick from the narrow container
was coded along two dimensions: (1) the type of grasp (i.e. precision or
otherwise) and (2) the planfulness of the grasp (i.e. whether infants pre-
configured their grasp). From this data, we categorized infants into groups of
precision and nonprecision graspers. Precision graspers were those infants
who produced at least one planful precision grasp, and nonprecision graspers
were those infants who did not perform any planful precision grasps.
Importantly, some nonprecision graspers may have produced some precision
grasps, but they were never planful precision grasps.

During the habituation paradigm, infants were randomly assigned to one
of the two conditions. In both conditions, infants watched the actor move
a green bowl from one side of the stage to another. In the upright to inverted
(UI) condition, the bowl began in the upright configuration, and infants
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were habituated to an actor using a two-finger, precision grasp to move the
bowl across the table. In the Inverted to upright condition (IU), the bowl
began in the inverted configuration, and infants were habituated to the actor
using a whole-hand grasp to move the bowl across the table. Across both
conditions, the bowl was decorated in such a way that it was easy to tell if the
bowl was upright (with the concave surface pointing upward) or inverted.
For this particular bowl, when it was upright, it was possible to grasp and
move the bowl using a precision gripdwith the index and middle fingers on
the inside wall of the bowl and the thumb on the outside wall in line with
the fingersdwhile a whole-hand graspdwith all the fingers and thumb
reaching across the topdwas not functional for moving the bowl. However,
when the bowl was inverted, the functionality of these two grasps was
reversed.

Following habituation, the bowl orientation was switched, such that
infants in the UI condition saw the bowl oriented upside down, whereas
those in the IU condition saw the bowl oriented right side up. Infants across
both conditions saw two types of test events, one in which the actor grasped
the bowl with a whole-hand grasp (whole-hand event), and one in which
the actor grasped the bowl with a precision grasp (precision event).
Importantly, the bowl was not moved across the table during test trialsdthe
actor stopped her movement at the point of contact with the bowl.

Given the differential orientation of the bowl across the two conditions,
the grasps featured in the test trials had different implications for event
outcomes. For infants in UI condition (right side up bowl on habituation,
upside down bowl on test), the precision grasp was no longer functional on
test trialsdthat is, using the precision grasp would not be effective for
moving the bowl, whereas the whole-hand grasp was effective for moving
the bowl. In contrast for infants in the IU condition (upside down bowl on
habituation, and right side up bowl on test), given the width of the bowl (the
bowl was sufficiently wide so that a whole-hand grasp would not allow the
actor to secure a firm enough purchase on the bowl to allow him or her to
move it), a precision grasp would permit moving the bowl, but a whole-
hand grasp would not allow the actor to move the bowl (the bowl was
sufficiently wide so that a whole-hand grasp would not allow the actor to
secure a firm enough purchase on the bowl to allow him or her to move it).

Our prediction was that infants’ looking times to the test events would
vary as a function of both the conditions they took part in and their ability to
produce the precision grasp in their own behavior. Our predictions were
born out in the findings. In both conditions, precision graspers recovered
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attention both when the actor used a different grasp than she had on
habituation trials and when the grasp was the same as the habituation grasp
but would no longer allow the actor to lift and move the bowl. Non-
precision graspers behaved very differently: they only recovered to the
perceptually novel grasp in each condition and not to the perceptually
familiar grasps that now had different functional consequences.

Thus, infants who are relatively skilled at precision grasping presumably
inferred the outcome of the test events using information about the actor’s
grasp type: infants recovered attention to events that would yield unsuc-
cessful outcomes, even though these events featured perceptually familiar
hand configurations. These findings suggest that infants’ ability to produce
the precision grasp provided them with a basis for generating outcomes for
events involving the precision grasps of others.

An interesting and important question for future work concerns whether
infants, in addition to combining information from different motor acts in
their own actions to come up with novel actions and motor decisions, can
combine information from other individuals’ disparate motor acts to
generate novel predictions about their behavior. Research to date suggests
that this may be within infants’ reach. Past work (Sommerville & Wood-
ward, 2005a, 2005b) revealed that, as a group, infants do not identify the
goal of a sequence in which an actor pulls a cloth supporting a toy in order to
obtain the toy until roughly 12 months of age. Sommerville and Crane
(2009) investigated whether 10-month-old infants could use information
regarding an actor’s prior goal in the context of a reach and grasp event to
disambiguate a cloth-pulling sequence. Infants saw an actor reach for and
grasp one of the two toys sitting side-by-side on a stage five times prior
to taking part in a cloth-pulling habituation paradigm. During the
cloth-pulling habituation paradigm, the actor pulled a cloth supporting an
out-of-reach toy that supported her prior goal object. On test trials, the toy
locations were reversed and infants saw the actor reach toward a new goal
object by grasping the same cloth she had previously versus events in which
the actor reached toward the same goal object she had previously by grasping
a new cloth. The results revealed that infants used information from the
actor’s prior act (her pursuit of the toy when it was directly in front of her) to
identify her goal in the cloth-pulling sequence, looking longer to the change
in the actor’s ultimate goal object than the change to the cloth she acted on.
An interesting question is whether infants can go one step further to make an
inference based on the actor’s prior behavior: given evidence of an actor’s
goal in a direct reach and grasp event could infants use this information to
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identify the goal of an action sequence or tool use event after only seeing the
first step of the sequence?

Taken together, the above studies suggest that infants are good at
inferring the goals behind, and outcomes underlying, familiar actions, even
when these actions occur in novel contexts. These results suggest that
representations of goal-directed actions not only guide online in-the-
moment action perception but also provide a basis for inferences about
future actions and outcomes. Thus, even though infants build representa-
tions of goal-directed actions that appear to be fairly specific to particular
motor acts, these representations are also sufficiently abstract to support
inferences about outcomes in novel contexts.

4. INCREASING ABSTRACTEDNESS IN
REPRESENTATIONS OF GOAL-DIRECTED ACTION

Taken together, the findings suggest that, by acting on the world, infants
build action-specific representations that guide their perception and
understanding of others’ actions. A critical question then becomes how and
when infants’ representations of goal-directed action become more abstract.
More mature representations of goal-directed action are more abstract in at
least two senses. First, adults and older children can recognize goals as
entirely divorced from action because they possess a general and broad
concept of a goal. Second, adults and children recognize that instances of
goal-directed action can be represented in various ways: goal-directed
actions are not solely driven by transient desires for particular outcomes but
can also be explained by enduring preferences for objects or as driven by
societal conventions.

With respect to the first question, Woodward, Gerson and colleagues
have suggested that infants may move toward more abstract representations
of goals through an analogy-like process, based on their possession of
a general cognitive mechanism that promotes structural mapping between
their own familiar actions and novel actions that they witness (Gerson &
Woodward, 2010). Infants may align familiar actions, for which they have
already extracted the goal structure, with novel actions that share perceptual
features with familiar actions. Such alignment in turn may support their
extraction of high-level features of these novel events, such as the goals
underlying these actions. New evidence from Gerson and Woodward
(2012) provides support for this hypothesis: giving 7- and 10-month-old
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infants the opportunity to compare a familiar action with a novel, tool-use
action produced by another person helps them to extract the goal of the
tool-use action. This process may enable infants to begin to recognize goals
as divorced from particular actions, allowing them to build a broader and
more abstract concept of goals.

We addressed the second question concerning when infants can repre-
sent the same action at different levels, by looking at infants’ expectations of
an object selection event. Critically, such an event could be represented at
a variety of different levels. The actor’s object selection may indicate
a transient action goal that is specific to a given time or place, or it could
indicate a predisposition toward, or preference for a given object (among
many other interpretations). Some accounts have suggested that infants,
from an early age, necessarily represent events in which an actor reaches for
one of the two objects as a preference (Luo & Baillargeon, 2007). However,
because the mere selection of one object over another does not unambig-
uously imply a preference for one object over another object, we investi-
gated whether infants might flexibly alter their interpretation of an object
selection given information provided by the surrounding context.

To address this question, we (Sommerville, 2008; Sommerville, Crane &
Yun, in preparation) habituated 10-month-old infants to an event in which
an actor looked at and considered two toys sitting side-by-side on a table in
front of her. She subsequently selected one of the two toys and picked it up,
smiling at the toy. Infants were randomly assigned to one of the two
conditions: in the dispositional statement condition, after the actor picked
up the toy she indicated her liking of the toy (e.g. “I like frogs”), whereas in
the general remark condition, she made a nonspecific remark directed
toward the object (e.g. “Look. Wow”). Otherwise, the two conditions were
identical.

Test trials took place in another room, just down the hall from the
habituation room. During test trials, the toys appeared in reverse locations
with respect to the actor. On the target trials, the actor reached for and
grasped the same object she had during habituation trials. On the nontarget
trials, the actor reached for and grasped the other object. There was no
language accompanying the actor’s object selection on test trials.

Our question of interest was whether, and under what circumstances,
infants’ interpretation or representation of the actor’s object selection would
generalize to the new room. We assumed that if infants represented the
actor’s original object selection in the first room as stemming from a transient
goal, they would restrict their expectations regarding another person’s object
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selection to the original context in which they witnessed the selection. In
contrast, if they viewed the action as reflecting an enduring preference for
the object, they would expect the actor to continue to choose their original
object in a new room. If infants flexibly used contextual information to
guide their interpretation of the actor’s original object selection, we
hypothesized that whereas infants who heard the general remark might
represent the actor’s object selection as a transient goal-directed act with no
consequences for future actions, infants who heard the dispositional state-
ment might build a more abstract representation of the object selection,
representing it as stemming from an enduring preference for the selected
object. If our hypothesis was correct, we expected that infants in the general
remark condition would look equally to the test events because they
construed her initial object selection as representing a transient goal, and
therefore possessed no expectations regarding which of the toy objects the
actor would pursue in a new room. In contrast, infants in the dispositional
statement condition were predicted to represent the object selection as an
enduring disposition or preference that persisted across space and time and
thus demonstrate longer looking to test events in which the actor pursued
the nontarget toy.

Our predictions were born out: infants in the dispositional statement
demonstrated longer looking to the nontarget toy event over the target toy
event, whereas infants in the general remark condition demonstrated equal
looking to both test events. Critically, follow-up analyses confirmed that the
effects of the dispositional statement did not merely make the habituation
event more memorable, leading to greater generalization across the context:
rates of habituation and looking times during habituation trials were iden-
tical across conditions. Infants’ preference for the nontarget toy event in the
dispositional statement condition was correlated with parental reports of
infants’ receptive vocabulary, raising the possibility that infants’ under-
standing of the phrase or some part of it altered their interpretation of the
habituation event. Moreover, additional conditions in which the actor
produced nonsense language, matched in intonation and prosody to the
dispositional statement, produced null findings, providing evidence that it
was something about the meaning of the phrase, or particular words in the
phrase, that influenced infants’ inferences.

In a subsequent condition, we investigated whether infants could also use
statements that indicated a dislike for an object to guide their inferences
about another person’s object selection in a new context. Ten-month-old
infants were habituated to an actor reaching behind one of two opaque
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occluders to retrieve a toy. She subsequently picked up the toy and indicated
her dislike with a facial expression and a dispositional statement (e.g. “I hate
frogs”). The occluders were used to create an ecologically valid context
in which an actor would repeatedly reach to a single location despite
finding something she ’did not like there. As in the prior two conditions, test
trials occurred in a separate room in reverse locations with respect to the
actor.

In this condition, we found that infants 10 months of age and older
expected the actor to pursue a novel object in the new room: infants
demonstrated longer looking times to events in which the actor pursued the
target toy than the nontarget toy. Thus, given repeated evidence that an
actor dislikes a toy, infants appeared to expect that the actor would pursue
a different object in a new room. Infants’ preference for the target toy event
was marginally related to parental reports of comprehensive vocabulary,
suggesting that infants’ comprehension of the dislike phrase, or some parts of
the phrase, may have assisted them in making a dispositional attribution.

Taken together, our results indicated that infants, by 10 months of age, at
least under certain conditions, possess the ability to recognize actions as
stemming from preferences for particular objects, or dispositional attitudes
toward objects (see also Luo & Baillargeon, 2007). Our results also indicate
that infants are not beholden to representing a particular action in a partic-
ular way: rather, depending on the surrounding context, infants can
represent the same action as either reflecting a transient goal or an enduring
preference. Thus, these findings suggest that infants may not possess
a “default mode” for representing human action in a particular way (Csibra
& Gergely, 2009; Gergely, Egyed & Kir�aly, 2007), and instead, toggle back
and forth flexibly between different representational levels of human action
depending on the context.

A critical question concerns the role of language in infants’ under-
standing of the actions of others. Our findings suggest that certain linguistic
information accompanying human action, along with infants’ burgeoning
language comprehension, guides infants’ expectations about another
person’s likely future actions. In our study, the accompanying linguistic
phrase may have impacted how infants represented the actor’s object
selection (as a transient goal or as an enduring preference) and thus the
expectations they drew from that representation (whether or not she would
choose the object in another room).

In terms of the role of language in infants’ understanding of action, more
broadly our results are consistent with two possibilities. First, it is possible
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that infants’ understanding of goal-directed action as stemming from
enduring preferences results from another source (e.g. something other than
language) and that the linguistic context accompanying action is just one of
many cues that infants might use to specify whether a given goal-directed act
specifies an enduring preference or a transient goal. Infants could potentially
draw on other sources of information, such as pursuit of the object across
multiple contexts to decide whether the object selection is an indication of
an enduring preference or a transient goal. Second, it is possible that
language plays a more profound role in infants’ elaborating infants’ under-
standing of the actions of others. Below, we consider some possible ways in
which language might impact infants’ action understanding.

Research by Waxman and colleagues (see Waxman & Leddon, 2011;
Waxman, 2004 for reviews) has systematically demonstrated that the pres-
ence of labels accompanying the presentation of objects influences how or
whether infants categorize these objects. Nine- to thirteen-month-old
infants represent objects with respect to their category membership when
objects are accompanied by a labeling phrase, but not a nonlabeling phrase,
or a tone (Balaban & Waxman, 1997; Fulkerson & Haaf, 1998, 2003;
Waxman & Markow, 1995). One possibility, then, is that language provides
infants with a new means for categorizing actions that cut across or subsume
the more specific representations that infants build through their own
actions on the world, resulting in higher-level representations of the actions
of others. We call this the “categorization” hypothesis. According to this
hypothesis, adults may frequently produce utterances that contain language
labels during the production of goal-directed action. The use of consistent
labels accompanying action may have an effect on how infants categorize
disparate actions. Specifically, a common label that accompanies disparate
actions may lead infants to recognize commonalities among actions that have
the same goal or outcome, thus, leading infants to establish a higher-order
representation.

To play the categorization hypothesis out concretely, imagine an adult
standing in the kitchen who reaches into a cookie box, retrieves a cookie
and then says, “I love cookies.” Twenty minutes later, the same adult, now
sitting on the couch in the living room, pulls a newspaper supporting a plate
of cookies toward her and reaches for a cookie, while saying, “I really love
cookies.” The presence of a common label across these different instances of
goal-directed action may lead infants to form a new category that empha-
sizes the common goal of both instances that subsequently drives predictions
across a wider range of circumstances.
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Another, not necessarily mutually exclusive possibility, is what wewill call
the “bootstrapping” hypothesis. This hypothesis starts out the same way: in
the course of every day life adults produce language labels that accompany
goal-directed action. However, language exerts its influence on infants’
representations not via categorization, but by leading infants to apply
expectations that they hold regarding labels to the actions that accompany
those labels. Very recent evidence suggests that infants as young as 6–9months
of age may have begun to appreciate defining features of labels (Bergelson &
Swingley, 2012): infants of this age appear to recognize that labels refer to
classes of objects, not individual exemplars, and are consistent across contexts.
When labels accompany action, infants may transfer expectations that they
hold about labels to actions: specifically, that actions are directed toward
classes of objects, not individual exemplars, and that actions are not context
specific. Under this hypothesis, infants possess certain expectations regarding
labels, and when action and labels co-occur, action comes along for the ride.

At this point, both these accounts are merely speculative, and there may,
of course, be other stories that fit the data equally well. Critically, however,
these accounts yield predictions that could be empirically tested in future
studies. First, central to both accounts is the suggestion that labels accom-
pany the production of action in everyday contexts. Thus, this claim could
be empirically evaluated by examining the production of labels accompa-
nying action in naturalistic situations. Second, both accounts stress the role
of labels, as opposed to nonlabels or nonlinguistic stimuli, in particular, in the
birth of more abstract representations of action.

The categorization hypothesis could be tested using methods that are
similar to those used byWaxman and colleagues (Balaban &Waxman, 1997;
Fulkerson & Haaf, 1998, 2003; Waxman & Markow, 1995). For example,
studies could contrast the effect of labels versus tones in habituation para-
digms in which infants are habituated to different exemplars of goal-directed
action with common goals (e.g. opening a box to get a toy car; pulling
a cloth to get a toy car, etc.), and tested with events that feature a contrast
between novel actions with the same goal (e.g. using a cane to get a toy car)
and familiar actions with a novel goal (pulling a cloth to get a toy frog). The
prediction here would be that labels accompanying action (vs. tones, or
other nonlabels, accompanying action) would produce (a) faster habituation
rates during habituation trials (because they assisted infants in recognizing the
common goal across different actions) and (b) selective recovery of attention
to new goal events and not as the categorization hypothesis new action
events (because only the new goal event crosses the category boundary).
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Similarly, the bootstrapping hypothesis could be tested by systematically
manipulating the presence versus absence of a label in the language that
accompanies action and testing infants’ tendency to generalize the actor’s
object selection across the context (although Sommerville et al., in prepa-
ration, compared the dispositional statementd“I like frogs”dto a general
remarkd“Look. Wow”dit could be argued that it was not the absence vs.
presence of a label per se that led to the differences across the conditions).
For example, comparisons could be made between conditions in which
a dispositional statement containing a label (“I like frogs”) versus conditions
in which the dispositional statement does not contain a label (“I like this”).
According to the bootstrapping hypothesis, the prediction is that although
the dispositional statements accompanying the action are nearly identical,
save the presence or absence of a label, only infants in the dispositional
statement with label condition would generalize the actor’s object selection.

Taken together, these recent findings suggest that a promising new
direction for research on action understanding concerns the role that
language may play in the process of building more abstract representations.

5. CONCLUSIONS AND IMPLICATIONS FOR EARLY
LEARNING MORE BROADLY

In this chapter, we discussed both the nature of infants’ representations of
goal-directed action as well as how these representations are constructed. In
the first part of the chapter, we suggested that infants’ developing ability to
produce goal-directed action leads to the development of goal-centered
representations of human action that guides their perception and under-
standing of others’ actions. These representations possess a delicate blend of
both abstract and concrete elements. They are concrete in so far as they are
formed on an action-by-action basis. They are abstract in that they underlie
both the production and perception of action and support inferences
regarding upcoming actions and action outcomes both regarding infants’
own actions and with respect to the actions of others.

These findings have important implications for early learning. First, they
suggest that infants’ early representations, more broadly, are likely charac-
terized by both concrete and abstract elements. This recognition takes the
emphasis away from categorizing representations as either abstract or concrete,
describing the ways in which early representations may possess both elements.
Second, they suggest that active and observational experience may play
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differential roles in the construction of early representations. Specifically, our
findings suggest that active experience plays a privileged and/or preferential
role in infants’ ability to create goal-centered representations of others’
actions. A critical question for future research is whether such differential
effects of active versus observational experience extend to other domains, and
the full range of conditions under which observational and active experience
may exert differential or similar influences on early learning.

In the second half of the chapter, we reviewed evidence to suggest that
by at least the end of the first year of life, infants may possess the ability to
represent the very same action at different levels of representational speci-
ficity depending on the surrounding context. With respect to early learning
more broadly, these findings suggest that contextual factors may heavily
influence the level at which infants represent different objects or events, and,
thus, serious attention should be given to the role of context in early
learning. More specifically, our findings raise the possibility that the
linguistic context accompanying action, or language more broadly, may
facilitate infants’ construction of more abstract interpretations of goal-
directed action. We suggest novel ways in which labels may affect infants’
developing understanding of action and perhaps the nature of infants’
representations more broadly. Future work can help to determine whether
language plays a causal role in the development of increasingly abstract
representations of infants’ own and others’ actions.
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