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Abstract  

For infants and young children, learning takes place all the time and everywhere. How 

children learn best both in and out of school has been a long-standing topic of debate in 

education, cognitive development, and cognitive science. Recently, guided play has been 

proposed as an integrative approach for thinking about learning as a child-led, adult-assisted 

playful activity. The interactive and dynamic nature of guided play presents theoretical and 

methodological challenges and opportunities. Drawing upon research from multiple disciplines, 

we discuss the integration of cutting-edge computational modeling and data science tools to 

address some of these challenges, and highlight avenues towards an empirically grounded, 

computationally precise and ecologically valid framework of guided play in early education. 

Keywords: guided play; computational modeling; data science; direct instruction; free 
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The theoretical and methodological opportunities afforded by guided play with young children 

Learning in school is often characterized by structured courses and tasks with discrete 

and explicit objectives. Yet, learning is a continuous process that also takes place outside the 

classroom where explicit objectives are not always evident. This is especially true in early 

childhood interactions at home, where children often learn from everyday interactions with both 

the physical environment and with social partners (Bruner, 1961; Csibra & Gergely, 2009). How 

to best navigate between explicit, objective-directed learning and more flexibly driven 

exploration has been a longstanding topic of debate in education, developmental psychology, and 

cognitive science (Kirschner, Sweller, & Clark, 2006; Tobias & Duffy, 2009). This debate 

surfaces in a number of forms, as direct instruction vs. discovery learning or as work vs. play 

(Bonawitz, Shafto, et al., 2011; Clements & Sarama, 2014; Hirsh-Pasek & Golinkoff, 2011). 

Pitting these two interests against each other has neither optimized our understanding of learning, 

nor produced optimal methods of learning (Wise & O'Neill, 2009). Here, we discuss an 

integrated approach, guided play, that enables us to rethink learning as a child-led, adult-assisted 

activity (Weisberg, Hirsh-Pasek & Golinkoff, 2013; Weisberg, Hirsh-Pasek, Golinkoff & 

McCandliss, 2014; Weisberg, et al., 2016). Focusing on everyday interactions in early childhood, 

guided play is operationally defined as learning that is active and engaged, where the child takes 

initiative in a playful learning environment and the adult supports, rather than directs, the 

learning experience. Sitting between free play, where children explore by themselves, and direct 

instruction, where the interaction is led by an adult and children take a passive role, guided play 

takes advantage of the latest research in the science of learning. 

Educational research indicates that student-led discovery learning that is facilitated by 

teachers outperforms both direct instruction and unassisted discovery (Honomichl & Chen, 2012; 



Mayer, 2004). In a meta-analysis comparing explicit instruction, unassisted discovery, and 

assisted discovery (Alfieri, Brooks, Aldrich, & Tenenbaum, 2011), learning outcomes were more 

favorable for assisted discovery than for other forms of instruction. These results held for 

learners of different ages and across different learning domains. Similarly, developmental studies 

have shown an advantage of adult guidance over both direct instruction and free play, even 

before children start formal schooling (Fisher, Hirsh-Pasek, Newcombe, & Golinkoff, 2013; 

Haden, Cohen, Uttal, & Marcus, 2016; Han, Moore, Vukelich & Buell, 2010; Ridge, Weisberg, 

Ilgaz, Hirsh-Pasek, Golinkoff, 2015; Sim & Xu, 2017; Yu, Landrum, Bonawitz, & Shafto, under 

review). In both bodies of literature, “guidance” has referred to a variety of practices including 

modeling, questioning, encouragement, and feedback, and thus it is unclear what particular 

aspects of guidance are associated with learning (Honomichl & Chen, 2012; Wise & O'Neill, 

2009). 

In guided play, learning opportunities may be explicitly structured, but importantly the 

activity is child-led. Specifically, we define “guidance” as adults’ involvement that subtly 

channels the dyadic interactions to fulfill certain pedagogical objectives, while not interfering too 

much so that the activities remain child-led. The pedagogical objectives can be multi-level: They 

can focus on specific content knowledge, but can also focus on the emotional, motivational, and 

metacognitive aspects of the learning process, such as cultivating children’s love of learning, 

promoting their engagement, or making them aware of their own learning process (Weisberg, et 

al., 2014). Our concept of guidance is inspired by the Vygotskian concept of scaffolding 

(Vygotsky, 1934/1978; Wood, Bruner, & Ross, 1976; Fernández, Wegerif, Mercer, & Rojas-

Drummond, 2001) and Barbara Rogoff’s theory of guided participation (Rogoff, et al., 1993). In 

addition to guidance being tailored to fit individual children’s needs and skill level (which is 



similar to scaffolding), in guided play we also emphasize that guidance should never shift 

children away from controlling their own learning process. The pedagogical objectives of 

guidance are therefore broader—besides helping children to master particular knowledge or 

skills, guided play also aims to provide children with an opportunity to enjoy, control, and reflect 

upon their own learning process, which may facilitate independent inquiry and discovery in the 

future. 

Because guided play requires seamless integration between the adult’s objectives to 

support learning and child-led activity that can be highly fluid, characterizing appropriate 

guidance requires an understanding of the dynamic nature of an adult-child interaction in 

context. First, guided play is interactive. How well children can learn from a playful interaction 

depends on their mental state (Putnam, 1980) at the moment—including their level of 

knowledge, goal, attention, emotion, trust towards the play partner, etc. Therefore, effective 

guidance should take into account and be contingent upon the mental state of the child. This 

requires theories to consider the dyad as a system moving toward a joint objective (Fogel & 

Garvey, 2007; Heller & Rohlfing, 2017; Lavelli et al., 2015), and requires experimental designs 

and analytical tools that go beyond between-group comparisons to focus on individual dyads. 

Second, guided play is dynamic. Timing is critical for the guidance to be effective. Providing a 

label, for example, can be educational at a moment when a child is focusing on the target object, 

but can be confusing when the child is focusing on multiple objects (Pereira, Smith, & Yu, 

2014). Similarly, demonstrating object functions when an infant is pointing to the object also 

supports learning (Begus, Gliga, & Southgate, 2014). For preschoolers, revealing causal features 

of objects right before, but not after, a demonstration of categorization facilitates children’s 

category learning (Yu, & Kushnir, 2016). Existing theories, such as direct instruction and free 



play, and methodological tools, such as standard statistical tests, are optimized for discrete 

interventions and are usually applied uniformly across groups of individuals. Characterizing the 

dynamic nature of guided play will require development of new theories and tools to capture 

interventions along a continuous timeline. In what follows, we detail these theoretical and 

methodological matters, the tools that may be used to address them, and the prospects for a 

theory of guided play. 

Theoretical challenges and opportunities for guided play 

Free play and direct instruction have long been contrasted in education and cognitive 

development (Dewey, 1933; Hirsh-Pasek, Golinkoff, Berk, & Singer, 2008; Kirschner, Sweller, 

& Clark, 2006; Mayer, 2004), and existing mathematical and computational models for the two 

scenarios have likewise been developed separately because they typically focus on different 

aspects of learning (Nelson, 2005; Shafto, Goodman, & Griffiths, 2014). Free play is based on 

the constructivist views of learning, which portrays learning as an active process during which 

the learner repeatedly intervenes on their environment, and update their beliefs based on 

information gathered from these experiences (Piaget, 1952). Correspondingly, computational 

models of free play have largely focused on how to sequentially choose evidence during learning 

(Markant & Gureckis, 2014; Nelson, 2005; Settles, 2010; McCormack, et al., 2016). These 

models generate predictions about how the optimal next step will depend on the current state and 

are therefore dynamic. However, such models are inadequate to capture the interactive aspect of 

guided play because they do not usually simulate a social partner whose behavior is contingent 

on the learner. 

In contrast, direct instruction emphasizes the necessity of outside instructions for learners 

to successfully navigate a learning task (Kirschner, Sweller, & Clark, 2006), and focuses on what 



content should be delivered by instruction (Mayer, 2004). Correspondingly, computational 

models of direct instruction have focused on the evidence teachers should select to lead learners 

to the correct answer, given the learner’s current beliefs (Rafferty, Brunskill, Griffiths, & Shafto, 

2015; Shafto & Goodman, 2008; Shafto, Goodman, & Griffiths, 2014; Shafto, Goodman, Frank, 

2012; Zhu, 2015; Frank, 2014). Some of these models simulate the interactive nature of teaching 

and learning through modeling the teacher and the learner’s reasoning about the other’s 

knowledge levels and objectives (Shafto & Goodman, 2008; Shafto, et al., 2012, 2014). 

However, these models are not dynamic; they select evidence with the immediate goal of the 

learner arriving at the correct inference. When dynamic extensions have been proposed, they 

encounter significant computational challenges that render the models of limited use for 

modeling real-life scenarios (Rafferty, et al., 2015; Yang & Shafto, 2017). 

Theories and models of epistemic trust may inform modeling of dynamic interactions 

between a teacher and a learner. The literature on epistemic trust has investigated the dynamics 

of reasoning, focusing on a learner’s sensitivity to both a teacher’s prior knowledge in a given 

domain (Pasquini, Corriveau, Koenig, & Harris, 2007; Sobel & Corriveau, 2010) as well as her 

social group membership when making decisions about whom to trust (Chen, Corriveau, & 

Harris, 2013; Kinzler, Corriveau, & Harris, 2011). Models of epistemic trust (Shafto, Eaves, 

Navarro, & Perfors, 2012; Eaves & Shafto, 2012; 2017) tend to build upon aforementioned 

models of direct instruction. Although both of these bodies of work make the prediction that 

children’s epistemic and social evaluation of a teacher should influence their trust in her (and 

therefore, their sensitivity to her guidance), to date, both the experimental and computational 

work has focused on the dynamics of trust, but not learning.  



Finally, ecological psychology and dynamic systems approaches have been applied to 

analyze dynamic interactions between adults and children (Bronfenbrenner, 1986; Fogel & 

Garvey, 2007; Thelen & Smith, 1996). These approaches were foundational in emphasizing the 

need to view adult-child interactions as a system that evolves through time, as well as the need to 

situate these interactions in the immediate environment. They also provided invaluable 

computational tools to analyze patterns of co-activities that emerges along time. Because formal 

dynamic systems models often focus on overt behavior, applying these models to guided play 

may require an extension which takes into account the mental state and inferential capacities of 

both learners and guiding adults.  

A unified theory of guided play must combine strengths from previous research to 

capture the interactive and dynamic nature of learning. A key challenge for proposing such a 

theory is the development of theoretical frameworks that avoid simulating every possible mental 

state of the teacher and the learner, which would create intractable computational problems. 

Even the simplest learning situations involve many potential choices by both learners and 

guiding adults. For example, when an adult guides a child to learn the name of an object, the 

adult could choose from a variety of actions (e.g., pointing to the object, holding it, looking at the 

child, or looking at the object) as well as utterances (e.g., naming the object, or asking a 

question), and the child could also respond in a variety of ways (e.g., reaching for the object, 

repeating the word, or displaying a puzzled face). Adults and children nevertheless navigate such 

situations, making choices while balancing short- and long-term objectives. To simulate these 

capacities, one approach is to adopt simplified computational models similar to those employed 

in the educational technology literature. One example is Bayesian knowledge tracing, which 

instead of modeling the learner’s full belief state, focuses on whether the learner has the correct 



concepts (Corbett, Anderson, 1995; Yudelson, Koedinger, & Gordon, 2013). A second approach 

is to use task-specific information to limit the set of relevant actions. For example, an approach 

that pairs observation of naturalistic adult-child interaction during a task with an experiment that 

measures the learning outcome of that task could help to identify the task-relevant subset of 

information (Yu, Bonawitz, & Shafto, 2017). Subsequent experimental studies could then test 

predictions of the model on this reduced set of relevant information rather than the whole set of 

logical possibilities. 

 Methodological challenges and opportunities for guided play 

The interactive and dynamic properties of guided play also pose questions for 

experimental design and analysis that may require modifications of existing tools and the 

development of new ones. One source of methodological challenges arises from variations in the 

effectiveness of guidance based on individual characteristics of the child. Guidance content that 

is effective for one child may not be effective for a different child. For example, two children 

may have different misconceptions about what constitutes a triangle (Fisher et al., 2013): One 

may think a triangle needs to have the point at the top, whereas the other may think a triangle 

needs to have all acute angles. In this case, different examples should be presented to guide these 

two children away from their respective misconceptions: It would be more effective to show the 

first child a real triangle with point in the bottom, and show the second child an obtuse triangle. 

This intuition is supported by research: Research in category learning has shown that a set of 

evidence that is effective in facilitating one person’s learning may be less effective when 

presented to another person (Markant & Gureckis, 2014; Sim, Tanner, Alpert, & Xu, 2015). In 

addition, individual differences in children’s background knowledge, cognitive style, and 

experiences with different sociocultural practices can all influence the effectiveness of presenting 



certain content to them (Gutiérrez & Rogoff, 2003; McNamara, Kintsch, E., Butler-Songer, & 

Kintsch, W. 1996; Price, 2004). Individual differences remain an important topic for further 

research. 

The timing of guidance is also important: Well-timed guidance that is contingent upon 

the child’s prior actions may impact child learning outcomes differently than if the same 

guidance is not well-timed (Pereira, Smith, & Yu, 2014). Such variability in guidance content 

and timing poses challenges to typical random-assignment controlled experiments, as uniform 

interventions applied to groups of randomly assigned individuals do not necessarily test the 

interactive and dynamic predictions of guided play. Yet observational designs are insufficient to 

tease apart the causal relations between components of guided play and children’s learning 

outcomes. Therefore, new methods and analytical tools are required to select the content and 

timing of guidance to maximally inform our understanding of the mechanisms involved in 

guided play. 

Advances in data science and technology may provide tools for addressing some of these 

challenges by providing an opportunity for real-time analysis and feedback, as well as (semi-

)automatic analysis of large amounts of time series data. For example, in word-learning 

scenarios, children look at the experimenter more when they are uncertain about an object label 

(Hembacher, deMayo, & Frank, 2017). Thus, an overt behavior, here eye gaze, reveals important 

information about the learner’s mental state, and could represent opportunities for guidance. 

Technological advances in eye-tracking equipment and data sharing mechanisms have allowed 

for the collection and sharing of large-scale, live-stream video data from naturalistic adult-child 

interactions (Databrary, 2012; Franchak, Kretch, Soska, & Adolph, 2011). However, coding and 

analysis of children’s looks are usually conducted manually, which restricts the amount of data 



that can be utilized and precludes real-time feedback during the interaction. Applying tools of 

automatic decoding of eye movements and looking, such as those used in vision research (Borji 

& Itti, 2014; Duc, Bays, Husain, 2008; Gottlieb, Oudeyer, Lopes, & Baranes, 2013), may allow 

for the online recognition of the referent associated with the child’s gaze, which, in turn, may 

help to nominate a range of appropriate guidance “moves” that are contingent upon the child’s 

attention and mental state. Indeed, research in social robotics has implemented gaze and action 

detection in robot learners to infer human teachers’ pedagogical intent based on their gaze and 

actions, and to react in a contingent way (e.g., when the teacher showed an object with 

pedagogical cues, the robot turned head to the same object; then when the teacher looked back at 

the robot’s eyes and labeled the object, the robot looked at the teacher and smiled). Human 

teachers were more engaged and more likely to attribute human-like traits to the robot when the 

robot displayed these contingent reactions (Lohan, et al., 2012). Similar algorithms may also 

support teachers who provide guidance contingent on the learner’s behavior. 

Similarly, the learner’s affect and engagement plays an important role (Rader & Hughes, 

2005; Greene & Noice, 1988). In guided play, the joy that accompanies play helps to sustain 

motivation, interest, and excitement, which should be associated with enhanced learning 

outcomes (Hirsh-Pasek & Golinkoff, 2003; Weisberg, et al., 2016). Unfortunately, given the 

time-intensive nature of affect coding, the evidence relating affective states to improved learning 

outcomes is less extensive. Data science tools may be used to automatically identify affect and 

engagement in real-time video streams for analysis, and to time guidance to foster affect that 

predict positive short term and long term learning (Baker, LoBue, Bonawitz, & Shafto, 2017; 

Littlewort, et al., 2006; Yao, Shao, Ma, & Chen, 2015). Such analytical tools would allow for 

direct tests of guided play predictions related to the timing of learning, while employing 



experimental designs that are similar to those typically used in the developmental and 

educational literature. 

 Coupling computational models and data science tools 

A more ambitious possibility is to couple models and data science tools to create 

experiments highlighting times when interventions may yield the strongest test of the theory. 

Attempts at interactive, dynamic approaches to teaching can be found in the literature of social 

robotics and intelligent tutoring systems (Anderson, Boyle, & Reiser, 1985; Breazeal, 2002; 

Clement, Roy, Oudeyer, & Lopes, 2015; Lohan, et al., 2012; Nguyen & Oudeyer, 2014; Thomaz 

& Breazeal, 2008; Vollmer, et al., 2014), in which data from expert teachers have been used to 

train algorithms to learn the contingencies between learner’s behavior and teachers’ appropriate 

response (Ruvolo, Whitehill, Virnes, & Movellan, 2008). Such data-driven approaches can serve 

as a first step for identifying patterns in guided-play interactions. However, to understand 

characteristics of effective guidance, we also need theory-driven computational models that can 

represent children’s mental states based on their behavior. Such models differ from existing 

intelligent tutoring systems in that instead of teaching knowledge in specific domains, they are 

designed to understand the general principles of effective guidance in a wide range of child-led 

activities that may or may not have an explicit learning goal. Coupling such models with 

empirical data could inform an algorithm that predicts appropriate guidance based on children's 

behavior, which could in turn be used in experiments to verify the effect of guidance on 

children’s learning. These experiments would have significant advantages relative to classic 

training studies, as the intervention is based on an online algorithm which would adapt based on 

children’s moment-by-moment behavior. 
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Figure 1. We propose a framework that integrates computational modeling and data science to 

address challenges brought by the interactive and dynamic nature of guided play.  By modeling 

children’s moment-to-moment mental state from their task-relevant behavior, the proposed 

framework identifies guidance that are optimized in terms of timing and form, with the objective 

of sustaining the children’s interests toward the learning goal. The italic text provides an 

example of learning geometric shapes (Fisher et al., 2013) to show how the framework could be 

implemented to a specific guided play interaction. This framework can facilitate research of 

guided play by identifying key aspects of guidance within the dynamic and complex interactions 

children experience in their everyday environment. 

 

Consider how such computational models could be applied to a recent study of guided 

play (Fisher et al., 2013). This study examined different pedagogical methods on preschoolers’ 

learning of geometric shapes, with increased learning in guided play as compared to didactic 

instruction and free play. In the guided play condition, the experimenter presented two typical 

examples (e.g., upright triangles) and two atypical examples (e.g., inverted triangles) in a playful 

manner, and asked children to determine what makes them the same shape. During children’s 

active exploration the experimenter used questions, encouragement, and feedback to guide them 

towards the correct answer. Yet, because the interaction was dynamic, the manner and timing of 

adult guidance were not prespecified in the experimental design, which makes it difficult to 

pinpoint what aspects of guidance resulted in the enhanced learning outcomes. 

Following the aforementioned framework, existing videos of guided play interactions 

could be used to train a computational model of learning geometric shapes in four steps: First, 

data science tools can identify a set of common task-relevant behavior during children’s active 



exploration, and cluster behaviors into categories (e.g., children’s looking and pointing may be 

categorized as seeking guidance from the experimenter; their emotion as confident vs. doubtful; 

their language as statements or questions). Tools of this stage could build upon advances in 

(semi-)automatic recognition of eye gaze (e.g., Lohan, et al., 2012; Smith, Yu, Yoshida, & 

Fausey, 2015), emotion (e.g., Baker, LoBue, Bonawitz, & Shafto, 2017; Nojavanasghari, Huang, 

& Khan, 2018), natural language including information-seeking questions (e.g., Rothe, Lake, & 

Gureckis, 2016), among others. 

Second, a computational model can be used to simulate children’s moment-to-moment 

beliefs about geometric shapes based on these behavioral patterns. For example, if children point 

to an upright triangle, look doubtfully at the experimenter, and ask “Is this a triangle because the 

point is at the top?”, their presumed belief about triangles would shift towards the wrong 

hypothesis of “point at the top”, with a flat distribution indicating uncertainty. The model at this 

stage could be built upon existing work that links behavior with mental states on a microgenetic 

scale, including those that model shifting hypotheses (e.g., Bonawitz, Denison, Gopnik, & 

Griffiths, 2014), epistemic trust (e.g., Eaves & Shafto, 2017), and automatic goal inference 

(inverse reinforcement learning; e.g. Baker, Saxe, & Tenenbaum, 2009). 

Third, a model of guidance can identify the most effective intervention given children’s 

current belief. For example, in the aforementioned scenario, to shift children’s belief away from 

the wrong hypothesis and towards the correct hypothesis, the best example to show may be a real 

triangle with the point at the bottom. Existing models of teaching, such as the model presented in 

Rafferty, et al., 2015, has used partially observable Markov decision process to optimize 

teaching actions given the learner’s observed behaviors as well as previous teaching actions. 

Similar approaches could be used to build models that optimize guidance based on children’s 



current belief. Importantly, the model is not intended to immediately lead the child to the correct 

hypothesis as in direct instruction (e.g., “Triangles are shapes bounded by three edges and three 

vertices”), rather it optimizes the child’s interest to guide them toward the correct hypothesis. In 

this way, guided play remains child-led. 

Finally, the recommended intervention can be carried out by the experimenter in a way 

that is consistent with the principles of guided play (e.g., through questions like “What about this 

one [pointing to the inverted triangle]? Does it have point at the top? Is it a real triangle?”). 

Once trained, this model will significantly advance our understanding of 1) how 

individual children grasp concepts of geometric shapes; 2) common misconceptions along the 

way; and 3) optimal interventions. The resulting model-based interventions allow for guidance 

tailored to the learner’s moment-by-moment belief states. 

 Prospects and directions for a theory of guided play 

For children, learning takes place everywhere, all the time, and often involves 

interactions by the learner with more knowledgeable individuals. This ubiquity of learning 

opportunities can be exploited by providing subtle guidance that is contingent on the 

environment and children’s current mental state (Ridge, et al, 2015). Although research has 

highlighted the advantage of guided play, as compared to direct instruction or free play for 

facilitating learning (Alfieri, et al., 2011; Fisher, et al., 2013; Haden, et al., 2016; Sim & Xu, 

2017; Yu, Landrum, Bonawitz, & Shafto, under review), pinpointing the optimum content and 

timing of guidance requires an understanding of the interactive and dynamic nature of an adult-

child interaction. 

We suggest that integrating computational models and data science tools may help lay 

out an avenue towards an empirically grounded and computationally precise framework of 



guided play. By modeling children’s moment-to-moment mental state and the responsive 

behavior from adults, the proposed model has the potential to identify different components of 

guided play from dynamic and individualized interactions, and recommend model-based 

interventions that are optimized in terms of timing and form, with the objective of sustaining the 

child’s interests toward the learning goal. The resulting theory of guided play could identify key 

aspects of guidance that makes guided play effective in a particular context, while maintaining 

the complexity and ecological validity that comes with the interactive and dynamic nature of the 

theory. The goal is to use this framework to understand how learning proceeds and when it 

succeeds, which will also depend on the cultural context and individual learner. Future work 

could further extend the framework from one-on-one interactions in early childhood to more 

complex learning scenarios and topics, such as those in a classroom setting. We hope such a 

framework will shed light on principles of optimal environments and practices to facilitate 

children’s learning, and present an example of using new approaches to studying cognitive 

development. 
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